Evidence of cingulate motor representation in humans

Article abstract A 44-year-old man with a right frontal lobe tumor and intractable seizures underwent subdural grid evaluation before resection. The electrode locations were identified on a three-dimensional surface-reconstructed image of the brain after subdural grid placement. Electrical stimulation of electrodes placed over the right cingulate gyrus revealed evidence of tonic posturing of the left forearm and wrist and tonic extension of the left leg. This finding provides further evidence of a motor area in the cingulate gyrus in humans.

[1]  P. Strick,et al.  Motor areas on the medial wall of the hemisphere. , 1998, Novartis Foundation symposium.

[2]  S P Wise,et al.  The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  E Wyllie,et al.  Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. , 1994, Electroencephalography and clinical neurophysiology.

[4]  E. Crosby,et al.  Somatic and visceral responses from the cingulate gyrus , 1958, Neurology.

[5]  H. Lüders,et al.  Localization of Cortical Function: New Information from Extraoperative Monitoring of Patients with Epilepsy , 1988, Epilepsia.

[6]  G. McCarthy,et al.  Functional organization of human supplementary motor cortex studied by electrical stimulation , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  W PENFIELD,et al.  The supplementary motor area of the cerebral cortex; a clinical and experimental study. , 1951, A.M.A. archives of neurology and psychiatry.

[8]  J. Talairach,et al.  The cingulate gyrus and human behaviour. , 1973, Electroencephalography and clinical neurophysiology.

[9]  G. Rizzolatti,et al.  Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey , 1991, The Journal of comparative neurology.