2-(N,N-Dimethylamino)ethylselenolates of cadmium(II): Syntheses, structure of [Cd3(OAc)2(SeCH2CH2NMe2)4] and their use as single source precursors for the preparation of CdSe nanoparticles

The reaction of Cd(OAc) 2  · 2H 2 O with NaSeCH 2 CH 2 NMe 2 gave a homoleptic cadmium selenolate, [Cd(SeCH 2 CH 2 NMe 2 ) 2 ]. The latter complex, on treatment with Cd(OAc) 2  · 2H 2 O, afforded [Cd 3 (OAc) 2 (SeCH 2 CH 2 NMe 2 ) 4 ], which was structurally characterized by single-crystal X-ray diffraction analysis. Pyrolysis of [Cd(SeCH 2 CH 2 NMe 2 ) 2 ] either in a mixture of hot hexadecylamine (HDA) and tri- n -octylphosphine oxide (TOPO) or in a furnace (180 and 200 °C) gave CdSe nanoparticles with average sizes varying between 3 and 21 nm. Both cubic and hexagonal phases of CdSe nanoparticles have been isolated under different experimental conditions. The CdSe nanoparticles were characterized by UV–Vis, photoluminescence, X-ray diffraction and electron microscopy. Time resolved luminescence measurements showed three different decay times for both band edge and trap state emissions.

[1]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[2]  M. A. Malik,et al.  A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. , 2003, Chemical communications.

[3]  J. Zhang,et al.  Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles , 2000 .

[4]  P. S. Nair,et al.  A multiple injection method for exerting kinetic control in the synthesis of CdSe nanorods. , 2004, Chemical communications.

[5]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[6]  Neerish Revaprasadu,et al.  Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles , 2001 .

[7]  T. C. Green,et al.  Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles , 1996, Science.

[8]  T. Emge,et al.  polymeric Cd(Se-2-NC5H4)2 and Square Planar Hg(Se-2-NC5H4)2: Volatile CVD Precursors to II-VI Semiconductors , 1994 .

[9]  A. Eychmüller,et al.  Detection of shallow electron traps in quantum sized CdS by fluorescence quenching experiments , 1993 .

[10]  M. A. Malik,et al.  Mixed alkyl zinc or cadmium complexes with dialkyl thio- or selenocarbamates: Precursors for cadmium chalcogenides , 1994 .

[11]  J. Slot,et al.  Sizing of protein A-colloidal gold probes for immunoelectron microscopy , 1981, The Journal of cell biology.

[12]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[13]  Murray,et al.  Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. , 1994, Physical review. B, Condensed matter.

[14]  A. P. Alivisatos,et al.  Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods , 2001 .

[15]  Younan Xia,et al.  Direct Synthesis of Se@CdSe Nanocables and CdSe Nanotubes by Reacting Cadmium Salts with Se Nanowires , 2003 .

[16]  Dynamics of photoluminescence in medium-size CdSe quantum crystallites , 1997 .

[17]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[18]  Charles M. Lieber,et al.  Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires , 2002 .

[19]  P. O’Brien,et al.  Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots , 1999 .

[20]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[21]  J. Vittal,et al.  Synthesis, structure and solution NMR properties of (Ph4P)[M(SeC[O]Tol)3], M = Zn, Cd and Hg. , 2004, Dalton transactions.

[22]  W. Kaim,et al.  Synthesis and structure of bis(2- N , N -dimethylamioethyl-selenolato)zinc and its transformation to ZnSe , 2003 .

[23]  Mark A. Rodriguez,et al.  Growth and morphology of cadmium chalcogenides: the synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O2CCH3)2 , 2003 .

[24]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[25]  Alivisatos,et al.  Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. , 1994, Physical review. B, Condensed matter.

[26]  Zhong Lin Wang,et al.  Single-crystal CdSe nanosaws. , 2004, Journal of the American Chemical Society.

[27]  Thomas J. Meyer,et al.  Comprehensive Coordination Chemistry II , 2004 .

[28]  P. D. Ellis,et al.  Cadmium-113 shielding tensors of oxo cadmium compounds. 2. Single-crystal studies on cadmium calcium tetraacetate hexahydrate, cadmium maleate dihydrate, cadmium formate dihydrate, cadmium diammonium disulfate hexahydrate, and cadmium diacetate dihydrate , 1984 .

[29]  W. Kaim,et al.  Structural basis for unusually long wavelength charge transfer transitions in complexes [MCl(ECH(2)CH(2)NMe(2))(PR(3))] (E = Te, Se; M = Pt, Pd): experimental results and TD-DFT calculations. , 2002, Inorganic chemistry.

[30]  W. Kaim,et al.  2-(Dimethylamino)ethaneselenolates of palladium(II): synthesis, structure, spectroscopy and transformation into palladium selenide , 2001 .

[31]  Hiroyuki Nakamura,et al.  Preparation of CdSe nanocrystals in a micro-flow-reactor. , 2002, Chemical communications.

[32]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[33]  M. Grätzel Getting smaller by design , 1989, Nature.

[34]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[35]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[36]  W. Kaim,et al.  Platinum(II) Complexes of 2-(Dimethylamino)ethylselenolate − Donor−Acceptor Inter-Ligand Interactions as Evident from Experimental and TD-DFT Computational Analysis , 2001 .

[37]  R. Tenne,et al.  Thin‐film CdSe: Photoluminescence and electronic measurements , 1988 .

[38]  William L. Wilson,et al.  Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states , 1992 .

[39]  J. Lin,et al.  Dynamics of bound-exciton energy transformation to edge-luminescence centers in CdS , 1990 .

[40]  Xiaogang Peng,et al.  Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .

[41]  M. Rajamathi,et al.  A solvothermal route to capped CdSe nanoparticles , 2001 .

[42]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[43]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[44]  Mark Green,et al.  Semiconductor quantum dots as biological imaging agents. , 2004, Angewandte Chemie.

[45]  M. Hampden‐Smith,et al.  Synthesis, Characterization, and Reactivity of Group 12 Metal Thiocarboxylates, M(SOCR)(2)Lut(2) [M = Cd, Zn; R = CH(3), C(CH(3))(3); Lut = 3,5-Dimethylpyridine (Lutidine)]. , 1997, Inorganic chemistry.

[46]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.