Digital filter implementation based on the RNS with diminished-1 encoded channel
暂无分享,去创建一个
[1] Jian Wen Chen,et al. Efficient Modulo 2n+1 Multipliers , 2011, IEEE Trans. Very Large Scale Integr. Syst..
[2] Haridimos T. Vergos,et al. High speed parallel-prefix modulo 2/sup n/+1 adders for diminished-one operands , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.
[3] K.P. Jacob,et al. Performance analysis of FIR digital filter design: RNS versus traditional , 2007, 2007 International Symposium on Communications and Information Technologies.
[4] G. Jullien,et al. An improved residue-to-binary converter , 2000 .
[5] C. Efstathiou,et al. On the modulo 2n+1 multiplication for diminished-1 operands , 2008, 2008 2nd International Conference on Signals, Circuits and Systems.
[6] Haridimos T. Vergos,et al. A Unifying Approach for Weighted and Diminished-1 Modulo $2^n+1$ Addition , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.
[7] Richard Conway,et al. Improved RNS FIR filter architectures , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.
[8] Antti Hämäläinen,et al. 8 Gigabits per Second Implementation of the IDEA Cryptographic Algorithm , 2002, FPL.
[9] M. Soderstrand,et al. A pipelined recursive residue number system digital filter , 1984 .
[10] Jian Wen Chen,et al. Efficient modulo 2n + 1 multipliers for diminished-1 representation , 2010, IET Circuits Devices Syst..
[11] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[12] W. Kenneth Jenkins,et al. The use of residue number systems in the design of finite impulse response digital filters , 1977 .
[13] Jian Wen Chen,et al. Efficient Modulo Multipliers , 2011 .
[14] Reto Zimmermann,et al. Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[15] L. Sousa,et al. {\text{\{ 2}}^{\text{n}} + 1,2^{n + k} ,2^n - 1\}: A New RNS Moduli Set Extension , 2004 .
[16] Giorgos Dimitrakopoulos,et al. Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.
[17] Haridimos T. Vergos,et al. Handling zero in diminished-one modulo 2 n + 1 adders , 2003 .
[18] W. C. Miller,et al. An Efficient Tree Architecture for Modulo 2 n + 1 Multiplication Journal of VLSI Signal Processing , 1996 .
[19] Ricardo Chaves,et al. {2/sup n/ + 1, 2/sup n+k/, 2/sup n/ - 1} : a new RNS moduli set extension , 2004, Euromicro Symposium on Digital System Design, 2004. DSD 2004..
[20] Ricardo Chaves,et al. {2 n +1, s n+k , s n -1}: A New RNS Moduli Set Extension. , 2004 .
[21] Jean-Luc Beuchat. Some modular adders and multipliers for field programmable gate arrays , 2003, Proceedings International Parallel and Distributed Processing Symposium.
[22] A. Antoniou. Digital Signal Processing: Signals, Systems, and Filters , 2005 .