Digital filter implementation based on the RNS with diminished-1 encoded channel

A technique, based on the residue number system (RNS) with diminished-1 encoded channel, has being used for implementing a finite impulse response (FIR) digital filter. The proposed RNS architecture of the filter consists of three main blocks: forward and reverse converter and arithmetic processor for each channel. Architecture for residue to binary (reverse) convertor with diminished-1 encoded channel has been proposed. Besides, for all RNS channels, the systolic design is used for the efficient realization of FIR filter. A numerical example illustrates the principles of diminished-1 residue arithmetic, signal processing, and decoding for FIR filters.

[1]  Jian Wen Chen,et al.  Efficient Modulo 2n+1 Multipliers , 2011, IEEE Trans. Very Large Scale Integr. Syst..

[2]  Haridimos T. Vergos,et al.  High speed parallel-prefix modulo 2/sup n/+1 adders for diminished-one operands , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[3]  K.P. Jacob,et al.  Performance analysis of FIR digital filter design: RNS versus traditional , 2007, 2007 International Symposium on Communications and Information Technologies.

[4]  G. Jullien,et al.  An improved residue-to-binary converter , 2000 .

[5]  C. Efstathiou,et al.  On the modulo 2n+1 multiplication for diminished-1 operands , 2008, 2008 2nd International Conference on Signals, Circuits and Systems.

[6]  Haridimos T. Vergos,et al.  A Unifying Approach for Weighted and Diminished-1 Modulo $2^n+1$ Addition , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Richard Conway,et al.  Improved RNS FIR filter architectures , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Antti Hämäläinen,et al.  8 Gigabits per Second Implementation of the IDEA Cryptographic Algorithm , 2002, FPL.

[9]  M. Soderstrand,et al.  A pipelined recursive residue number system digital filter , 1984 .

[10]  Jian Wen Chen,et al.  Efficient modulo 2n + 1 multipliers for diminished-1 representation , 2010, IET Circuits Devices Syst..

[11]  L. Leibowitz A simplified binary arithmetic for the Fermat number transform , 1976 .

[12]  W. Kenneth Jenkins,et al.  The use of residue number systems in the design of finite impulse response digital filters , 1977 .

[13]  Jian Wen Chen,et al.  Efficient Modulo Multipliers , 2011 .

[14]  Reto Zimmermann,et al.  Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).

[15]  L. Sousa,et al.  {\text{\{ 2}}^{\text{n}} + 1,2^{n + k} ,2^n - 1\}: A New RNS Moduli Set Extension , 2004 .

[16]  Giorgos Dimitrakopoulos,et al.  Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.

[17]  Haridimos T. Vergos,et al.  Handling zero in diminished-one modulo 2 n + 1 adders , 2003 .

[18]  W. C. Miller,et al.  An Efficient Tree Architecture for Modulo 2 n + 1 Multiplication Journal of VLSI Signal Processing , 1996 .

[19]  Ricardo Chaves,et al.  {2/sup n/ + 1, 2/sup n+k/, 2/sup n/ - 1} : a new RNS moduli set extension , 2004, Euromicro Symposium on Digital System Design, 2004. DSD 2004..

[20]  Ricardo Chaves,et al.  {2 n +1, s n+k , s n -1}: A New RNS Moduli Set Extension. , 2004 .

[21]  Jean-Luc Beuchat Some modular adders and multipliers for field programmable gate arrays , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[22]  A. Antoniou Digital Signal Processing: Signals, Systems, and Filters , 2005 .