Pseudo state feedback stabilization of commensurate fractional order systems

This paper addresses the problem of pseudo state feedback stabilization of commensurate fractional order systems. In the proposed approach, Linear Matrix Inequalities (LMI) formalism is used to check if the pseudo state matrix eigenvalues belong to the non convex fractional system stability region of the complex plane. A new LMI stability condition is first proposed. Based on this condition, a necessary and sufficient LMI method for the design of stabilizing controllers is given. Its efficiency is evaluated on an inverted fractional pendulum stabilization problem.

[1]  A. Oustaloup La dérivation non entière , 1995 .

[2]  Mahmoud Chilali Méthodes LMI pour l'analyse et la synthèse multicritère , 1996 .

[3]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[4]  Olivier Bachelier Commande des systemes lineaires incertains : placement de poles robuste en d-stabilite , 1998 .

[5]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[6]  A. Oustaloup,et al.  La commande crone : du scalaire au multivariable , 1999 .

[7]  Mathieu Moze,et al.  On stability of fractional order systems , 2008 .

[8]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, ECC.

[11]  Carl F. Lorenzo,et al.  Initialization in fractional order systems , 2001, 2001 European Control Conference (ECC).

[12]  Nicholas J. Higham,et al.  Approximating the Logarithm of a Matrix to Specified Accuracy , 2000, SIAM J. Matrix Anal. Appl..

[13]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[14]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[15]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[16]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[17]  Richard Hotzel Contribution a la theorie structurelle et la commande des systemes lineaires fractionnaires , 1998 .

[18]  Olivier Bachelier,et al.  Bounds for uncertain matrix root-clustering in a union of subregions , 1999 .

[19]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[20]  J. Sabatier,et al.  LMI Tools for Stability Analysis of Fractional Systems , 2005 .

[21]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .