Glutathione biosynthesis is upregulated at the initiation of MYCN‐driven neuroblastoma tumorigenesis

[1]  F. Speleman,et al.  Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma , 2015, Science Translational Medicine.

[2]  E. Bridges,et al.  PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. , 2015, Cancer research.

[3]  G. Qing,et al.  Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2 , 2015, Oncotarget.

[4]  S. Inoue,et al.  Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. , 2015, Cancer cell.

[5]  Bandana Sharma,et al.  CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer , 2014, Cell.

[6]  W. Weiss,et al.  The prenatal origins of cancer , 2014, Nature Reviews Cancer.

[7]  H. Ding,et al.  Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation , 2013, Oncogene.

[8]  K. Stegmaier,et al.  Targeting MYCN in neuroblastoma by BET bromodomain inhibition. , 2013, Cancer discovery.

[9]  A. Lane,et al.  Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. , 2012, Cell metabolism.

[10]  W. Weiss,et al.  Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. , 2011, Seminars in cancer biology.

[11]  M. Schwab,et al.  ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux , 2011, Journal of the National Cancer Institute.

[12]  Pei-hua Lu,et al.  Activation of AMP‐activated protein kinase is involved in vincristine‐induced cell apoptosis in B16 melanoma cell , 2011, Journal of cellular physiology.

[13]  K. Kinzler,et al.  Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome , 2011, Proceedings of the National Academy of Sciences.

[14]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[15]  J. Maris Recent advances in neuroblastoma. , 2010, The New England journal of medicine.

[16]  David S. Wishart,et al.  MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data , 2010, Nucleic Acids Res..

[17]  Á. Almeida,et al.  Human neuroblastoma cells with MYCN amplification are selectively resistant to oxidative stress by transcriptionally up‐regulating glutamate cysteine ligase , 2010, Journal of neurochemistry.

[18]  D. Felsher,et al.  MYC as a regulator of ribosome biogenesis and protein synthesis , 2010, Nature Reviews Cancer.

[19]  M. Assanah,et al.  HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer , 2010, Nature.

[20]  David S. Wishart,et al.  SMPDB: The Small Molecule Pathway Database , 2009, Nucleic Acids Res..

[21]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[22]  M. Pajic,et al.  Small-molecule multidrug resistance-associated protein 1 inhibitor reversan increases the therapeutic index of chemotherapy in mouse models of neuroblastoma. , 2009, Cancer research.

[23]  H. Ding,et al.  MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. , 2009, The American journal of pathology.

[24]  Jennifer E. Van Eyk,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2016 .

[25]  N. Curthoys,et al.  Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). , 2007, The Biochemical journal.

[26]  G. Semenza,et al.  Hypoxia-Inducible Factor 1 and Dysregulated c-Myc Cooperatively Induce Vascular Endothelial Growth Factor and Metabolic Switches Hexokinase 2 and Pyruvate Dehydrogenase Kinase 1 , 2007, Molecular and Cellular Biology.

[27]  M. Cheng,et al.  Involvement of reactive oxygen species in multidrug resistance of a vincristine‐selected lymphoblastoma , 2007, Cancer science.

[28]  M. Loda,et al.  c-Myc phosphorylation is required for cellular response to oxidative stress. , 2006, Molecular cell.

[29]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Peaston,et al.  Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[32]  G. Brodeur Neuroblastoma: biological insights into a clinical enigma , 2003, Nature Reviews Cancer.

[33]  W. Kamps,et al.  Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? , 2002, International journal of oncology.

[34]  S. Cole,et al.  Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. , 1998, Cancer research.

[35]  M. Takada,et al.  Requirement of Caspase-3(-like) Protease-mediated Hydrogen Peroxide Production for Apoptosis Induced by Various Anticancer Drugs* , 1998, The Journal of Biological Chemistry.

[36]  G. Mohapatra,et al.  Targeted expression of MYCN causes neuroblastoma in transgenic mice , 1997, The EMBO journal.

[37]  K. Cowan,et al.  Buthionine sulphoximine-mediated sensitisation of etoposide-resistant human breast cancer MCF7 cells overexpressing the multidrug resistance-associated protein involves increased drug accumulation. , 1995, British Journal of Cancer.

[38]  M Schwab,et al.  Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Varmus,et al.  Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. , 1984, Science.

[40]  J. Trent,et al.  Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour , 1983, Nature.

[41]  Beckwith Jb,et al.  IN SITU NEUROBLASTOMAS: A CONTRIBUTION TO THE NATURAL HISTORY OF NEURAL CREST TUMORS. , 1963 .

[42]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[43]  S. Robinson,et al.  Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma. , 2016, Cancer cell.

[44]  E. Bridges,et al.  PI 3 K-mTORC 2 but not PI 3 K-mTORC 1 regulates transcription of HIF 2 A / EPAS 1 and vascularization in neuroblastoma , 2015 .

[45]  Tsung-Cheng Chang,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2009, Nature.

[46]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[47]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[48]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[49]  F. Alt,et al.  Differential expression of myc family genes during murine development , 1986, Nature.

[50]  J. Beckwith,et al.  IN SITU NEUROBLASTOMAS: A CONTRIBUTION TO THE NATURAL HISTORY OF NEURAL CREST TUMORS. , 1963, The American journal of pathology.