A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc

Aims. The core collapse supernova rate provides a strong lower limit for the star formation rate (SFR). Progress in using it as a cosmic SFR tracer requires some confidence that it is consistent with more conventional SFR diagnostics in the nearby Universe. This paper compares standard SFR measurements based on Hα, far ultraviolet (FUV) and total infrared (TIR) galaxy luminosities with the observed core collapse supernova rate in the same galaxy sample. The comparison can be viewed from two perspectives. Firstly, by adopting an estimate of the minimum stellar mass to produce a core collapse supernova one can determine a SFR from supernova numbers. Secondly, the radiative SFR can be assumed to be robust and then the supernova statistics provide a constrain on the minimum stellar mass for core collapse supernova progenitors. Methods. The novel aspect of this study is that Hα, FUV and TIR luminosities are now available for a complete galaxy sample within the local 11 Mpc volume and the number of discovered supernovae in this sample within the last 13 years is high enough to perform a meaningful statistical comparison. We exploit the multi-wavelength dataset from 11 HUGS, a volume-limited survey designed to provide a census of SFR in the Local Volume. There are 14 supernovae discovered in this sample of galaxies within the last 13 years. Although one could argue that this may not be complete, it is certainly a robust lower limit. Results. Assuming a lower limit for core collapse of 8 M� (as proposed by direct detections of SN progenitor stars and white dwarf progenitors), the core-collapse supernova rate matches the SFR from the FUV luminosity. However, the SFR based on Hα luminosity is lower than these two estimates by a factor of nearly 2. If we assume that the FUV or Hα based luminosities are a true reflection of

[1]  A. J. Drake,et al.  SN 2008jb: A “LOST” CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT ∼10 Mpc , 2011, 1107.5043.

[2]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[3]  Kurtis A. Williams,et al.  A Photometric and Spectroscopic Search for White Dwarfs in the Open Clusters NGC 6633 and NGC 7063 , 2006, astro-ph/0611929.

[4]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[5]  Carnegie,et al.  The star formation rate distribution function of the local Universe , 2011, 1104.0929.

[6]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[7]  T. Krichbaum,et al.  The radio lightcurve of SN 2008iz in M82 revealed by Urumqi observations , 2009, 0909.5535.

[8]  R. Kotak,et al.  SN 2008S: An electron-capture SN from a super-AGB progenitor? , 2009, 0903.1286.

[9]  G. Blanc,et al.  Supernova progenitors and iron density evolution from SN rate evolution measurements , 2008, 0803.3793.

[10]  H. Zinnecker,et al.  Toward Understanding Massive Star Formation , 2007, 0707.1279.

[11]  K. Sheth,et al.  The Evolving ISM in the Milky Way and Nearby Galaxies , 2009 .

[12]  J. M. Apell'aniz Accepted for publication in the Astrophysical Journal Biases on initial mass function determinations. II. Real multiple systems and chance superpositions 1 , 2022 .

[13]  B. Milliard,et al.  The GALEX Ultraviolet Atlas of Nearby Galaxies , 2006, astro-ph/0606440.

[14]  Kurtis A. Williams,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 PROBING THE LOWER MASS LIMIT FOR SUPERNOVA PROGENITORS AND THE HIGH-MASS END OF THE INITIAL-FINAL MASS RELATION FROM WHITE DWARFS IN THE OPEN , 2022 .

[15]  G. Weidenspointner,et al.  Radioactive 26Al from massive stars in the Galaxy , 2006, Nature.

[16]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[17]  S. Smartt,et al.  VLT Detection of a Red Supergiant Progenitor of the Type II-P Supernova 2008bk , 2008, 0809.0206.

[18]  F. Mannucci,et al.  Nearby supernova rates from the Lick Observatory Supernova Search - IV. A recovery method for the delay-time distribution , 2010, 1002.3056.

[19]  G. Tammann A Progress Report on Supernova Statistics , 1977 .

[20]  D. Calzetti,et al.  THE SPITZER LOCAL VOLUME LEGACY: SURVEY DESCRIPTION AND INFRARED PHOTOMETRY , 2009, 0907.4722.

[21]  A. Hopkins,et al.  Extragalactic constraints on the initial mass function , 2008, 0809.2518.

[22]  H. Falcke,et al.  VLBI observations of SN 2008iz - I. Expansion velocity and limits on anisotropic expansion , 2010, 1003.4665.

[23]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[24]  S. Verley,et al.  A study of the Type II-P supernova 2003gd in M74 , 2005, astro-ph/0501341.

[25]  Nina Kokelj The Astronomer , 2014, World Literature Today.

[26]  Benjamin D. Johnson,et al.  COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES , 2009, 0909.5205.

[27]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[28]  Robert W. O'Connell,et al.  Far-Ultraviolet Radiation from Elliptical Galaxies , 1999, astro-ph/9906068.

[29]  A. Connolly,et al.  Toward a Resolution of the Discrepancy between Different Estimators of Star Formation Rate , 2001, astro-ph/0103253.

[30]  I. Karachentsev,et al.  The Galaxy Motion Relative to Nearby Galaxies and the Local Velocity Field , 1996 .

[31]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[32]  P. Kroupa,et al.  Galactic-Field Initial Mass Functions of Massive Stars , 2003 .

[33]  M. Kun,et al.  The first year of SN 2004dj in NGC 2403 , 2006 .

[34]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[35]  G. Tammann Supernova Statistics and Related Problems , 1982 .

[36]  G. Tammann Statistics of Supernovae , 1974 .

[37]  F. Mannucci,et al.  How many supernovae are we missing at high redshift , 2007, astro-ph/0702355.

[38]  S. Smartt,et al.  The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.

[39]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[40]  John T. Rayner,et al.  Optical and infrared observations of the Type IIP SN 2002hh from days 3 to 397 , 2006 .

[41]  H Germany,et al.  Diverging UV and Hα fluxes of star-forming galaxies predicted by the IGIMF theory , 2009, 0901.4335.

[42]  Lionel Siess,et al.  Evolution of massive AGB stars - II. model properties at non-solar metallicity and the fate of Super-AGB stars , 2007 .

[43]  J. Prieto,et al.  THE PHOTOMETRIC AND SPECTRAL EVOLUTION OF THE 2008 LUMINOUS OPTICAL TRANSIENT IN NGC 300 , 2011, 1109.5131.

[44]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[45]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[46]  L. Antonelli,et al.  The multicolored landscape of compact objects and their explosive Origins : Cefalù 2006 : Cefalù, Sicily, 11-18 and 19-24 June 2006 , 2007 .

[47]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies , 2010, 1006.5447.

[48]  Robert C. Kennicutt,et al.  DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS , 2009, 0908.0203.

[49]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[50]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[51]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[52]  K. Glazebrook,et al.  Evidence for a Nonuniversal Stellar Initial Mass Function from the Integrated Properties of SDSS Galaxies , 2007, 0711.1309.

[53]  E. Berger,et al.  AN INTERMEDIATE LUMINOSITY TRANSIENT IN NGC 300: THE ERUPTION OF A DUST-ENSHROUDED MASSIVE STAR , 2009, 0901.0710.

[54]  M. Livio,et al.  Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass? , 2005, astro-ph/0507394.

[55]  J. Prieto,et al.  Discovery of the Dust-Enshrouded Progenitor of SN 2008S with Spitzer , 2008, 0803.0324.

[56]  M. L. Pumo,et al.  EC-SNe FROM SUPER-ASYMPTOTIC GIANT BRANCH PROGENITORS: THEORETICAL MODELS VERSUS OBSERVATIONS , 2009, 0910.0640.

[57]  R. Chornock,et al.  SN 2008S: A COOL SUPER-EDDINGTON WIND IN A SUPERNOVA IMPOSTOR , 2008, 0811.3929.

[58]  R. Kennicutt,et al.  The Star Formation Demographics of Galaxies in the Local Volume , 2007, 0711.1390.

[59]  E. Bell,et al.  Stellar mass-to-light ratios and the Tully-Fisher relation , 2000, astro-ph/0011493.

[60]  N. M. Nagar,et al.  The infrared supernova rate in starburst galaxies , 2003, astro-ph/0302323.

[61]  J. Beacom The Diffuse Supernova Neutrino Background , 2006, 1004.3311.

[62]  E. Ofek,et al.  The Type IIb SN 2008ax: spectral and light curve evolution , 2008, 0805.1914.

[63]  M. Kramer,et al.  On the birthrates of Galactic neutron stars , 2008, 0810.1512.

[64]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[65]  D. Dewey,et al.  Bursting SN 1996cr's bubble: hydrodynamic and X-ray modelling of its circumstellar medium , 2010, 1005.1090.

[66]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[67]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[68]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[69]  Adam G. Riess,et al.  HIGH-REDSHIFT SUPERNOVA RATES , 2004 .

[70]  J. Beacom,et al.  Diffuse supernova neutrino background is detectable in Super-Kamiokande , 2008, 0812.3157.

[71]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[72]  F. Zwicky On the Frequency of Supernovae. , 1938 .

[73]  C. Kochanek STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS , 2009, 0909.4295.

[74]  M. Principe,et al.  SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.

[75]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[76]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[77]  Benjamin D. Johnson,et al.  A GALEX ULTRAVIOLET IMAGING SURVEY OF GALAXIES IN THE LOCAL VOLUME , 2010, 1009.4705.

[78]  C. Kochanek DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT , 2011 .

[79]  P. Kroupa,et al.  The influence of multiple stars on the high-mass stellar initial mass function and age-dating of young massive star clusters , 2008, 0811.3730.

[80]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[81]  Ulrich Hopp,et al.  Extensive optical and near-infrared observations of the nearby, narrow-lined type Ic SN 2007gr : days 5 to 415 , 2009, 0909.3780.

[82]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[83]  R. Kennicutt Constraints on the masses of supernova progenitors , 1984 .

[84]  S. Smartt,et al.  Supernova 1996cr: SN 1987A’s Wild Cousin? , 2008, 0804.3597.

[85]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[86]  Christopher S. Kochanek,et al.  A NEW CLASS OF LUMINOUS TRANSIENTS AND A FIRST CENSUS OF THEIR MASSIVE STELLAR PROGENITORS , 2008, 0809.0510.

[87]  L. Greggio The rates of type Ia supernovae – II. Diversity of events at low and high redshifts , 2010, 1001.3033.

[88]  Ryan Chornock,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[89]  R. Chevalier,et al.  Supernovae and supernova remnants , 1988 .

[90]  Pavel Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[91]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[92]  Galactic-Field IMFs of Massive Stars , 2003, astro-ph/0308356.

[93]  J. Prieto,et al.  THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE , 2011, 1102.1977.

[94]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[95]  Moscow,et al.  High mass of the type IIP supernova 2004et inferred from hydrodynamic modeling , 2009, 0908.2403.

[96]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[97]  S. Sakai,et al.  An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume , 2004, 0807.2035.

[98]  Spitzer Science Center,et al.  Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.

[99]  P. Massey Massive Stars in the Local Group: Implications for Stellar Evolution and Star Formation , 2003 .

[100]  J. Prieto,et al.  THE 2008 LUMINOUS OPTICAL TRANSIENT IN THE NEARBY GALAXY NGC 300 , 2009, 0901.0198.

[101]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[102]  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.