Plasma-Assisted N-Doped TiO2 Nanotube Array as an Active UV–vis Photoanode

[1]  J. Ryl,et al.  Nitrogen plasma-induced crystallization of anodic TiO2 nanotubes for solar photoelectrochemistry , 2023, Applied Surface Science.

[2]  Xiufeng Xiao,et al.  Effect of Titanium Matrix Structure on Growth Morphology of Anodized TiO2 Nanotube Arrays for Applications in Photoelectrochemical Performances , 2023, ACS Applied Nano Materials.

[3]  Ho Won Jang,et al.  Regulating the surface of anion-doped TiO2 nanorods by hydrogen annealing for superior photoelectrochemical water oxidation , 2022, Nano Convergence.

[4]  U. Helbig,et al.  Investigating and correlating photoelectrochemical, photocatalytic, and antimicrobial properties of [Formula: see text] nanolayers. , 2021, Scientific reports.

[5]  V. Mozhiarasi,et al.  Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications , 2021, Photochem.

[6]  S. Sirivithayapakorn,et al.  Application of TiO2 nanotubes as photocatalysts for decolorization of synthetic dye wastewater , 2021, Water Resources and Industry.

[7]  Fuxiang Zhang,et al.  Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications , 2021, Transactions of Tianjin University.

[8]  P. Schmuki,et al.  Intrinsically Ru-Doped Suboxide TiO2 Nanotubes for Enhanced Photoelectrocatalytic H2 Generation , 2021 .

[9]  M. Sakar,et al.  Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. , 2020, Environmental pollution.

[10]  M. Pisarek,et al.  Plasma Nitriding of TiO2 Nanotubes: N-Doping in Situ Investigations Using XPS , 2020, ACS omega.

[11]  L. T. Hieu,et al.  Enhanced Photocatalytic Performance of Nitrogen-Doped TiO2 Nanotube Arrays Using a Simple Annealing Process , 2018, Micromachines.

[12]  P. Smirniotis,et al.  Novel one-step synthesis of nitrogen-doped TiO2 by flame aerosol technique for visible-light photocatalysis: Effect of synthesis parameters and secondary nitrogen (N) source , 2018, Chemical Engineering Journal.

[13]  Ho Won Jang,et al.  One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation , 2018, Applied Catalysis B: Environmental.

[14]  I. Pereyra,et al.  Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction , 2018, Applied Surface Science.

[15]  E. Gaigneaux,et al.  Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications , 2018, Materials.

[16]  Rajini P. Antony,et al.  A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting , 2017, Scientific Reports.

[17]  M. Fadlallah Magnetic, electronic, optical, and photocatalytic properties of nonmetal- and halogen-doped anatase TiO 2 nanotubes , 2017 .

[18]  Lianjie Zhu,et al.  Effects of NH4F quantity on N-doping level, photodegradation and photocatalytic H2 production activities of N-doped TiO2 nanotube array films , 2017 .

[19]  M. Pisarek,et al.  Improvement of the bio-functional properties of TiO2 nanotubes , 2016 .

[20]  T. Klimczuk,et al.  Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant , 2016 .

[21]  P. Schmuki,et al.  Aminated TiO2 nanotube as a Photoelectrochemical Water Splitting photoanode , 2016, 1610.04153.

[22]  M. Sohrabi,et al.  Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light , 2016 .

[23]  K. Malek,et al.  Heat Treatment Effect on Crystalline Structure and Photoelectrochemical Properties of Anodic TiO2 Nanotube Arrays Formed in Ethylene Glycol and Glycerol Based Electrolytes , 2015 .

[24]  P. Schmuki,et al.  Extracting the limiting factors in photocurrent measurements on TiO2 nanotubes and enhancing the photoelectrochemical properties by Nb doping , 2015 .

[25]  Wenping Hu,et al.  N‐Doped TiO2/SrTiO3 Heterostructured Nanotubes for High‐Efficiency Photoelectrocatalytic Properties under Visible‐Light Irradiation , 2015 .

[26]  D. Boukhvalov,et al.  Structural defects and electronic structure of N-ion implanted TiO2: Bulk versus thin film , 2015, 1507.07647.

[27]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[28]  R. Asahi,et al.  Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. , 2014, Chemical reviews.

[29]  Feng Liu,et al.  Photoelectrical properties of nitrogen doped TiO2 nanotubes by anodic oxidation of N+ implanted Ti foils , 2014 .

[30]  Yan Wang,et al.  Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications , 2013 .

[31]  Yucheng He,et al.  Electrochemical behavior and photocatalytic performance of nitrogen-doped TiO2 nanotubes arrays powders prepared by combining anodization with solvothermal process , 2013 .

[32]  K. Lee,et al.  Bottom sealing and photoelectrochemical properties of different types of anodic TiO , 2013 .

[33]  Bo Chen,et al.  Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[34]  P. Zawadzki Absorption spectra of trapped holes in anatase TiO2 , 2013 .

[35]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[36]  A. K. Tyagi,et al.  Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films , 2012 .

[37]  Xudong Jiang,et al.  High Concentration Substitutional N‐Doped TiO2 Film: Preparation, Characterization, and Photocatalytic Property , 2011 .

[38]  X. Liu,et al.  Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis , 2011 .

[39]  Feng Zhou,et al.  TiO2 nanotubes: Structure optimization for solar cells , 2011 .

[40]  Q. Meng,et al.  Water splitting on TiO2 nanotube arrays , 2011 .

[41]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[42]  P. Knauth,et al.  Electrical and Point Defect Properties of TiO2 Nanotubes Fabricated by Electrochemical Anodization , 2011 .

[43]  J. Kang,et al.  Nature of N 2p, Ti 3d, O 2p hybridization of N-doped TiO2 nanotubes and superior photovoltaic performance through selective atomic N doping. , 2011, Chemistry.

[44]  Carlo Spartaco Casari,et al.  Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition , 2011 .

[45]  N. Kruse,et al.  XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects , 2011 .

[46]  Y. Lai,et al.  Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. , 2010, Journal of hazardous materials.

[47]  P. Schmuki,et al.  Doped TiO2 and TiO2 nanotubes: synthesis and applications. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  J. Woicik,et al.  Oxygen vacancies in N doped anatase TiO2: Experiment and first-principles calculations , 2009, 0911.3455.

[49]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[50]  Yue Liu,et al.  The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity , 2009, Nanotechnology.

[51]  Takeshi Morikawa,et al.  Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis , 2007 .

[52]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[53]  Jinlong Zhang,et al.  Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity , 2007 .

[54]  J. Macák,et al.  Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses , 2006 .

[55]  J. Macák,et al.  Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes , 2005 .

[56]  W. Jaegermann,et al.  XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface: Alignment of Energy Levels , 2002 .

[57]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[58]  J. Deville,et al.  Oxygen Auger spectra of some transition-metal oxides: relaxation energies and d-band screening , 1987 .

[59]  S. Matsuda,et al.  Titanium oxide based catalysts - a review , 1983 .

[60]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[61]  Juan Zhou,et al.  Visible-Light photocatalytic activity of n-doped TiO 2 nanotube arrays on acephate degradation , 2015 .