Using Presence‐Absence Data to Build and Test Spatial Habitat Models for the Fisher in the Klamath Region, U.S.A.

: Forest carnivores such as the fisher ( Martes pennanti) have frequently been the target of conservation concern because of their association in some regions with older forests and sensitivity to landscape-level habitat alteration. Although the fisher has been extirpated from most of its former range in the western United States, it is still found in northwestern California. Fisher distribution, however, is still poorly known in most of this region where surveys have not been conducted. To predict fisher distribution across the region, we created a multiple logistic regression model using data from 682 previously surveyed locations and a vegetation layer created from satellite imagery. A moving-window function in a geographic information system was used to derive landscape-level indices of canopy closure, tree size class, and percent conifer. The model was validated with new data from 468 survey locations. The correct classification rate of 78.6% with the new data was similar to that achieved with the original data set (80.4%). Whereas several fine-scale habitat attributes were significantly correlated with fisher presence, the multivariate model containing only landscape- and regional-scale variables performed as well as one incorporating fine-scale data, suggesting that habitat selection by fishers may be dominated by factors operating at the home-range scale and above. Fisher distribution was strongly associated with landscapes with high levels of tree canopy closure. Regional gradients such as annual precipitation were also significant. At the plot level, the diameter of hardwoods was greater at sites with fisher detections. A comparison of regional fisher distribution with land-management categories suggests that increased emphasis on the protection of biologically productive, low- to mid-elevation forests is important to ensuring the long-term viability of fisher populations. Resumen: Carnivoros del bosque como lo es el pescador ( Martes pennanti) han sido frecuentemente el blanco de preocupaciones conservacionistas debido a su asociacion en algunas regiones con bosque maduro y sensibilidad a alteraciones a nivel de paisaje. A pesar de que el pescador ha sido extirpado de la mayoria de su rango privio en el Oeste de los Estados Unidos, es aun encontrado en el Noroeste de California. La distribucion del pescador, sin embargo, es aun pobremente conocida en la mayor parte de esta region donde los muestreos aun no han sido realizados. Para predecir la distribucion del pescador a lo largo de la region, cremos un modelo de regrision logistica utilizando datos de 682 localidades previamente muestreadas y una capa de vegetacion creada a partir de imagenes de satelite. Una funcion de ventana en movimiento en un sistema de informacion geografico fue utilizada para derivar indices de compactacion del dosel, clases de tamanos de arboles y porcentaje de coniferas a nivel de paisaje. El modelo se valido con datos nuevos de 468 localidades muestreadas. La tasa de clasificacion correcta de un 78.6% con los datos nuevos fue similar a la obtenida con el juego de datos originales (80.4%). Mientras que diversos atributos a escala fina estuvieron significativamente correlacionados con la presencia del pescador, el modelo miltivariado conteniendo solo variables a nivel de paisaje y regional ejecuto tan bien como aquel que incorporo los datos de escala fina, sugiriendo que la seleccion de habitat por los pescadores puede estar dominada por factores que operan a escala de rango de hogar y por arriba de esta escala. La distribucion de los pescadores estuvo fuertemente asociada con paisajes con niveles altos de compactacion del dosel. Los gradientes regionales como la precipitacion anual tambien fueron significativos. A nivel de sitio, el diametro de las maderas duras fue mayor en sitios con detecciones de pescadores. Una comparacion de la distribucion regional de pescadores con categorias de manejo del suelo sugiere que un enfasis incrementado en la proteccion de bosques biologicamente productivos, con elevacion baja a media es importante en el aseguramiento de la viabilidad de largo plazo de poblaciones de pescadores.

[1]  Donald D. Katnik,et al.  Influence of Landscape Pattern on Habitat Use by American Marten in an Industrial Forest , 1998 .

[2]  R. Powell,et al.  Martens, Sables and Fishers' Biology and Conservation , 1996 .

[3]  D Hémon,et al.  Assessing the significance of the correlation between two spatial processes. , 1989, Biometrics.

[4]  R. Boone,et al.  Relations among fishers, snow, and martens in California: results from small-scale spatial comparisons , 1997 .

[5]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[6]  J. Wiens Spatial Scaling in Ecology , 1989 .

[7]  Richard R. Klug Occurrence of Pacific Fisher (Martes pennanti pacifica) in the Redwood Zone of Northern California and the Habitat Attributes Associated with their Detections , 1997 .

[8]  Gregory J. Davis,et al.  The demographic significance of ‘sink’ populations , 1991 .

[9]  M. Austin,et al.  Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity , 1996 .

[10]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[11]  Detection surveys for fishers and american martens in California, 1989-1994: summary and interpertations , 1997 .

[12]  飯塚 寛,et al.  Aspect transformation in site productivity research , 1967 .

[13]  Lee C. Wensel,et al.  Notes and Observations: Aspect Transformation in Site Productivity Research , 1966 .

[14]  Etc. Draft Supplemental Environmental Impact Statement. Management of habitat for late-successional and old-growth forest related species within the range of the northern spotted owl , 1993 .

[15]  Marie-Josée Fortin,et al.  Design for simultaneous sampling of ecological variables: from concepts to numerical solutions , 1989 .

[16]  R. Itami,et al.  GIS-based habitat modeling using logistic multiple regression : a study of the Mt. Graham red squirrel , 1991 .

[17]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[18]  Range Experiment Station,et al.  The Scientific basis for conserving forest carnivores , 1994 .

[19]  R. Haining Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[20]  H. Pulliam,et al.  Sources, Sinks, and Population Regulation , 1988, The American Naturalist.

[21]  R. Lande,et al.  Extinction Thresholds in Demographic Models of Territorial Populations , 1987, The American Naturalist.

[22]  K. Aubry,et al.  Distribution and Status of the Fisher (Martes pennanti) in Washington , 1992 .

[23]  R. Haight,et al.  A Regional Landscape Analysis and Prediction of Favorable Gray Wolf Habitat in the Northern Great Lakes Region , 1995 .

[24]  R. Whittaker Vegetation of the Siskiyou Mountains, Oregon and California , 1960 .

[25]  Thomas A. Spies,et al.  Dynamics and Pattern of a Managed Coniferous Forest Landscape in Oregon , 1994 .

[26]  Thomas B. Starr,et al.  Hierarchy: Perspectives for Ecological Complexity , 1982 .

[27]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[28]  David R. Brillinger,et al.  Case studies in biometry , 1995 .

[29]  C. T. Dyrness,et al.  Natural Vegetation of Oregon and Washington , 1988 .

[30]  M. Boyce,et al.  Relating populations to habitats using resource selection functions. , 1999, Trends in ecology & evolution.

[31]  Don L. Stevens,et al.  Implementation of a National Monitoring Program , 1994 .

[32]  John A. Wiens,et al.  The Ecology Of Bird Communities , 1989 .

[33]  Frederik P. Agterberg,et al.  Interactive spatial data analysis , 1996 .

[34]  N. Stenseth,et al.  Ecological mechanisms and landscape ecology , 1993 .

[35]  J. Franklin Preserving Biodiversity: Species, Ecosystems, or Landscapes? , 1993, Ecological applications : a publication of the Ecological Society of America.

[36]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[37]  R. Powell,et al.  The Fisher, Life History, Ecology and Behavior , 1984 .

[38]  C. S. Holling Cross-Scale Morphology, Geometry, and Dynamics of Ecosystems , 1992 .

[39]  Robert Haining,et al.  Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[40]  A. Keast The Ecology of Bird Communities. Volume 1: Foundations and Patterns. John A. WeinsThe Ecology of Bird Communities. Volume 2: Processes and Variations. John A. Weins , 1991 .

[41]  B. V. Horne,et al.  DENSITY AS A MISLEADING INDICATOR OF HABITAT QUALITY , 1983 .

[42]  Pierre Legendre,et al.  Untangling Multiple Factors in Spatial Distributions: Lilies, Gophers, and Rocks , 1996 .

[43]  D. Doak Source‐Sink Models and the Problem of Habitat Degradation: General Models and Applications to the Yellowstone Grizzly , 1995 .

[44]  C. Margules,et al.  Nature Conservation: Cost Effective Biological Surveys and Data Analysis , 1990 .

[45]  W. Cohen,et al.  Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. , 1995 .

[46]  Tim Coulson,et al.  POPULATION SUBSTRUCTURE, LOCAL DENSITY, AND CALF WINTER SURVIVAL IN RED DEER (CERVUS ELAPHUS) , 1997 .

[47]  John A. Bissonette,et al.  The Influence of Spatial Scale and Scale-Sensitive Properties on Habitat Selection by American Marten , 1997 .

[48]  P. Kareiva,et al.  Reevaluating the Use of Models to Predict the Consequences of Habitat Loss and Fragmentation , 1997 .

[49]  R. Noss,et al.  CARNIVORES AS FOCAL SPECIES FOR CONSERVATION PLANNING IN THE ROCKY MOUNTAIN REGION , 2001 .

[50]  Kevin S. McKelvey,et al.  Management of the spotted owl : A case history in conservation biology , 1996 .