An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations

Based on the modified relaxed splitting (MRS) preconditioner proposed by Fan and Zhu (Appl. Math. Lett. 55, 18–26 2016), an inexact modified relaxed splitting (IMRS) preconditioner is proposed for the generalized saddle point problems arising from the incompressible Navier-Stokes equations. The eigenvalues and eigenvectors of the preconditioned matrix are analyzed, and the convergence property of the corresponding iteration method is also discussed. Numerical experiments are presented to show the effectiveness of the proposed preconditioner when it is used to accelerate the convergence rate of Krylov subspace methods such as GMRES.

[1]  Ting-Zhu Huang,et al.  The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems , 2009 .

[2]  Bing Zheng,et al.  A relaxed positive semi-definite and skew-Hermitian splitting preconditioner for non-Hermitian generalized saddle point problems , 2015, Numerical Algorithms.

[3]  Yang Cao,et al.  A relaxed splitting preconditioner for generalized saddle point problems , 2015 .

[4]  P. G. Ciarlet,et al.  Numerical methods for fluids , 2003 .

[5]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[6]  Yu-Mei Huang,et al.  A practical formula for computing optimal parameters in the HSS iteration methods , 2014, J. Comput. Appl. Math..

[7]  Michael K. Ng,et al.  On Inexact Preconditioners for Nonsymmetric Matrices , 2005, SIAM J. Sci. Comput..

[8]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[9]  Jia Liu,et al.  An Efficient Solver for the Incompressible Navier-Stokes Equations in Rotation Form , 2007, SIAM J. Sci. Comput..

[10]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[11]  Changfeng Ma,et al.  Spectrum analysis of a more general augmentation block preconditioner for generalized saddle point matrices , 2016 .

[12]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  Gene H. Golub,et al.  Symmetric-triangular decomposition and its applications part II: Preconditioners for indefinite systems , 2008 .

[15]  Zhi-Hao Cao Fast uzawa algorithm for generalized saddle point problems , 2003 .

[16]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[17]  Zhi-Ru Ren,et al.  Generalized skew‐Hermitian triangular splitting iteration methods for saddle‐point linear systems , 2014, Numer. Linear Algebra Appl..

[18]  Yang Cao,et al.  A modified dimensional split preconditioner for generalized saddle point problems , 2013, J. Comput. Appl. Math..

[19]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[20]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[21]  Zhen Wang,et al.  A Relaxed Dimensional Factorization preconditioner for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[22]  Yang Cao,et al.  A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation , 2015, J. Comput. Appl. Math..

[23]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[24]  Hong-Tao Fan,et al.  A modified relaxed splitting preconditioner for generalized saddle point problems from the incompressible Navier-Stokes equations , 2016, Appl. Math. Lett..

[25]  M. Benzi,et al.  A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations , 2011 .

[26]  Michael K. Ng,et al.  Constraint Preconditioners for Symmetric Indefinite Matrices , 2009, SIAM J. Matrix Anal. Appl..

[27]  Fang Chen,et al.  On choices of iteration parameter in HSS method , 2015, Appl. Math. Comput..

[28]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[29]  Zhen Wang,et al.  Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations , 2011, SIAM J. Sci. Comput..

[30]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[31]  Zhong-Zhi Bai,et al.  Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..

[32]  Yang Cao,et al.  A splitting preconditioner for saddle point problems , 2011, Numer. Linear Algebra Appl..

[33]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[34]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[35]  Ting-Zhu Huang,et al.  A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations , 2012, J. Appl. Math..

[36]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[37]  Guo-Feng Zhang,et al.  On HSS-based constraint preconditioners for generalized saddle-point problems , 2010, Numerical Algorithms.

[38]  Fang Chen,et al.  On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.