First-principles calculation of compensated (2N, W) codoping impacts on band gap engineering in anatase TiO2

[1]  Yajun Wang,et al.  Effect of Compensated Codoping on the Photoelectrochemical Properties of Anatase TiO2 Photocatalyst , 2011 .

[2]  Z. Du,et al.  The effect of electronegative difference on the electronic structure and visible light photocatalytic activity of N-doped anatase TiO2 by first-principles calculations , 2011 .

[3]  G. Watson,et al.  GGA+U description of lithium intercalation into anatase TiO2 , 2010 .

[4]  Jürgen Hafner,et al.  Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.

[5]  N. English,et al.  First-principles calculation of electronic structure of V-doped anatase TiO2. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Suhuai Wei,et al.  Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2 , 2010 .

[7]  M. Kraft,et al.  Electronic and optical properties of aluminium-doped anatase and rutile TiO 2 from ab initio calculations , 2010 .

[8]  M. Fernández-García,et al.  Doping level effect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation , 2010 .

[9]  G. M. Stocks,et al.  Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. , 2009, Physical review letters.

[10]  M. Xing,et al.  Photocatalytic Performance of N-Doped TiO2 Adsorbed with Fe3+ Ions under Visible Light by a Redox Treatment , 2009 .

[11]  N. English,et al.  First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania , 2009 .

[12]  Suhuai Wei,et al.  Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. , 2009, Physical review letters.

[13]  T. Xiong,et al.  Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response , 2008 .

[14]  D. Gu,et al.  V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation , 2008 .

[15]  Baibiao Huang,et al.  Origin of the photoactivity in boron-doped anatase and rutileTiO2calculated from first principles , 2007 .

[16]  B. Ohtani,et al.  Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts , 2007 .

[17]  A. Emeline,et al.  Photoinduced Formation of Defects and Nitrogen Stabilization of Color Centers in N-Doped Titanium Dioxide , 2007 .

[18]  Pei-Nan Wang,et al.  First-principles calculation of N:H codoping effect on energy gap narrowing of TiO2 , 2007 .

[19]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[20]  J. Yao,et al.  Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. , 2006, The journal of physical chemistry. B.

[21]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[22]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[23]  Yi Li,et al.  A theoretical study on the electronic structures of TiO2: Effect of Hartree-Fock exchange. , 2005, The journal of physical chemistry. B.

[24]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[25]  Y. Wu,et al.  Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum , 2004 .

[26]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[27]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[28]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[29]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[30]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[31]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[32]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .

[33]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[34]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .