The island model as a Markov dynamic system

Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and their collaborators. An original and crucial feature of the framework we propose is the mechanism of inter-deme agent operation synchronization. It is important from both a practical and a theoretical point of view. We show that under a mild assumption the resulting Markov chain is ergodic and the sequence of the related sampling measures converges to some invariant measure. The asymptotic guarantee of success is also obtained as a simple issue of ergodicity. Moreover, if the cardinality of each island population grows to infinity, then the sequence of the limit invariant measures contains a weakly convergent subsequence. The formal description of the island model obtained for the case of solving a single-objective problem can also be extended to the multi-objective case

[1]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[2]  Günter Rudolph,et al.  Takeover time in parallel populations with migration , 2006 .

[3]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[4]  L. Darrell Whitley,et al.  An Executable Model of a Simple Genetic Algorithm , 1992, FOGA.

[5]  Jack Dongarra,et al.  Parallel Processing and Applied Mathematics , 2013, Lecture Notes in Computer Science.

[6]  Michael O'Neill,et al.  Biologically Inspired Algorithms for Financial Modelling (Natural Computing Series) , 2005 .

[7]  J. Norris Appendix: probability and measure , 1997 .

[8]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[9]  Zbigniew Skolicki,et al.  An analysis of island models in evolutionary computation , 2005, GECCO '05.

[10]  Zbigniew Michalewicz,et al.  Evolutionary algorithms , 1997, Emerging Evolutionary Algorithms for Antennas and Wireless Communications.

[11]  Niles Eldredge,et al.  Punctuated equilibria , 1997, Scholarpedia.

[12]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[13]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[14]  Samir W. Mahfoud Finite Markov Chain Models of an Alternative Selection Strategy for the Genetic Algorithm , 1993, Complex Syst..

[15]  J. Doob Stochastic processes , 1953 .

[16]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search , 2002 .

[17]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[18]  Günter Rudolph,et al.  Massively Parallel Simulated Annealing and Its Relation to Evolutionary Algorithms , 1993, Evolutionary Computation.

[19]  Ingo Wegener,et al.  A Rigorous Complexity Analysis of the (1 + 1) Evolutionary Algorithm for Separable Functions with Boolean Inputs , 1998, Evolutionary Computation.

[20]  Zdzisław Kowalczuk,et al.  Niching mechanisms in evolutionary computations , 2006 .

[21]  Robert Schaefer,et al.  Foundations of Global Genetic Optimization , 2007, Studies in Computational Intelligence.

[22]  Robert Schaefer,et al.  Diffusion Based Scheduling in the Agent-Oriented Computing System , 2003, PPAM.

[23]  Peter Radford,et al.  Petri Net Theory and the Modeling of Systems , 1982 .

[24]  Fatos Xhafa,et al.  Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids , 2011, Int. J. Appl. Math. Comput. Sci..

[25]  José Carlos Príncipe,et al.  A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm , 1991, ICGA.

[26]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[27]  Morgan B Kaufmann,et al.  Finite Markov Chain Analysis of Genetic Algorithms with Niching , 1993 .

[28]  Brad G. Kyer Review of 5 of biologically inspired algorithms for financial modelling by Anthony Brabazon, Michael O'Neill Springer-Verlag Berlin Heidelberg, 2006 , 2010, SIGA.

[29]  Joaquim Nunes Aparício,et al.  Populations are Multisets-PLATO , 1999, GECCO.

[30]  Robert Schaefer,et al.  Evolutionary Multiobjective Optimization Algorithm as a Markov System , 2010, PPSN.

[31]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[32]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[33]  L. Darrell Whitley,et al.  Island Model genetic Algorithms and Linearly Separable Problems , 1997, Evolutionary Computing, AISB Workshop.

[34]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[35]  Erick Cantú-Paz,et al.  A Summary of Research on Parallel Genetic Algorithms , 1995 .

[36]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[37]  Sam Nicol,et al.  Preface to the selected papers on modelling and control of metapopulation networks , 2010 .

[38]  Carl Hewitt,et al.  A Universal Modular ACTOR Formalism for Artificial Intelligence , 1973, IJCAI.

[39]  T. Nagylaki,et al.  The island model with stochastic migration. , 1979, Genetics.

[40]  D. Sworder,et al.  Introduction to stochastic control , 1972 .

[41]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[42]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[43]  Joe Suzuki A Markov Chain Analysis on A Genetic Algorithm , 1993, ICGA.

[44]  L. Darrell Whitley,et al.  Dataflow Parallelism in Genetic Algorithms , 1992, PPSN.

[45]  Mak Kaboudan,et al.  Biologically Inspired Algorithms for Financial Modelling , 2006, Genetic Programming and Evolvable Machines.

[46]  Zbigniew Skolicki,et al.  Improving Evolutionary Algorithms with Multi-representation Island Models , 2004, PPSN.

[47]  Robin Milner,et al.  Functions as processes , 1990, Mathematical Structures in Computer Science.

[48]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .

[49]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[50]  Changhe Li,et al.  An Island Based Hybrid Evolutionary Algorithm for Optimization , 2008, SEAL.

[51]  Robert Schaefer,et al.  Stochastic Model of Evolutionary and Immunological Multi-Agent Systems: Parallel Execution of Local Actions , 2009, Fundam. Informaticae.

[52]  Marius Iosifescu,et al.  Finite Markov Processes and Their Applications , 1981 .

[53]  Robert Schaefer,et al.  An agent-based model of hierarchic genetic search , 2012, Comput. Math. Appl..

[54]  Thomas Jansen,et al.  On the Optimization of Unimodal Functions with the (1 + 1) Evolutionary Algorithm , 1998, PPSN.

[55]  Marco Tomassini,et al.  Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time (Natural Computing Series) , 2005 .

[56]  Lothar M. Schmitt,et al.  Theory of genetic algorithms , 2001, Theor. Comput. Sci..

[57]  Robert Schaefer,et al.  Stochastic Model of Evolutionary and Immunological Multi-Agent Systems: Mutually Exclusive Actions , 2009, Fundam. Informaticae.

[58]  Riccardo Notarpietro,et al.  Data intensive scientific analysis with grid computing , 2011, Int. J. Appl. Math. Comput. Sci..

[59]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[60]  Paul Jung,et al.  No free lunch. , 2002, Health affairs.

[61]  Del Bueno Dj No free lunch. , 1978 .

[62]  Pierre Borne,et al.  EVOLUTIONARY ALGORITHMS FOR JOB-SHOP SCHEDULING , 2004 .

[63]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[64]  Dirk Sudholt,et al.  General Scheme for Analyzing Running Times of Parallel Evolutionary Algorithms , 2010, PPSN.

[65]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.