Bi 0.5 K 0.5 TiO 3 –CaTiO 3 ceramics: Appearance of the pseudocubic structure and ferroelectric‐relaxor transition characters

[1]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[2]  S. Asthana,et al.  Randomly arranged cation-ordered nanoregions in lead-free relaxor ferroelectric K1/2Bi1/2TiO3: Prediction from first-principles study , 2018, Journal of Applied Physics.

[3]  Fei Li,et al.  Multilayer Lead‐Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency , 2018, Advanced materials.

[4]  J. Suchanicz,et al.  Structural, thermal, dielectric and ferroelectric properties of K0.5Bi0.5TiO3 ceramics , 2018 .

[5]  Yoshitaka Ehara,et al.  Relaxor-ferroelectric crossover in ( B i 1 / 2 K 1 / 2 ) Ti O 3 : Origin of the spontaneous phase transition and the effect of an applied external field , 2017 .

[6]  Mupeng Zheng,et al.  Relaxor to ferroelectric crossover in KBT ceramics by prolonged annealing , 2017 .

[7]  T. Grande,et al.  Local Structure of Disordered Bi0.5K0.5TiO3 Investigated by Pair Distribution Function Analysis and First-Principles Calculations , 2017 .

[8]  Jacob L. Jones,et al.  Current Understanding of Structure–Processing–Property Relationships in BaTiO3–Bi(M)O3 Dielectrics , 2016 .

[9]  Y. Wang,et al.  Origin of Relaxor Behavior in K1/2Bi1/2TiO3–Bi(Mg1/2Ti1/2)O3 Investigated by Electrical Impedance Spectroscopy , 2016 .

[10]  Yiming Zeng,et al.  Polar Order Evolutions near the Rhombohedral to Pseudocubic and Tetragonal to Pseudocubic Phase Boundaries of the BiFeO3-BaTiO3 System , 2015, Materials.

[11]  S. Fujihara,et al.  Grain-size-dependent spontaneous relaxor-to-ferroelectric phase transition in (Bi 1/2 K 1/2 )TiO 3 ceramics , 2015 .

[12]  B. N. Rao,et al.  Structural crossover from nonmodulated to long-period modulated tetragonal phase and anomalous change in ferroelectric properties in the lead-free piezoelectric N a 1 / 2 B i 1 / 2 Ti O 3 − BaTi O 3 , 2015 .

[13]  Longlong Fan,et al.  Enhanced Piezoelectric Properties of Tetragonal (Bi1/2K1/2)TiO3 Lead-Free Ceramics by Substitution of Pure Bi-Based Bi(Mg2/3Nb1/3)O3 , 2015 .

[14]  P. Ramos,et al.  High-field electromechanical response of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 across its morphotropic phase boundary , 2014 .

[15]  R. Zuo,et al.  Morphotropic phase boundary and electrical properties of lead-free (K0.5Bi0.5)TiO3–Bi(Ni0.5Ti0.5)O3 relaxor ferroelectric ceramics , 2013 .

[16]  S. J. Milne,et al.  Dielectric and Piezoelectric Properties of (1−x)K0.5Bi0.5TiO3–xBa(Ti0.8Zr0.2)O3 Ceramics , 2013 .

[17]  H. Nagata,et al.  Fabrication and electrical properties of potassium excess and poor (Bi1/2K1/2)TiO3 ceramics , 2013 .

[18]  Jacob L. Jones,et al.  _Local Structure, Pseudosymmetry, and Phase Transitions in Na{1/2}Bi_{1/2}TiO3_K{1/2}Bi_{1/2}TiO_{3} Ceramics , 2013 .

[19]  H. Nagata,et al.  Effects of Starting Raw Materials for Fabricating Dense (Bi1/2K1/2)TiO3 Ceramics , 2013 .

[20]  R. Zuo,et al.  Phase transition behavior and electrical properties of lead-free (Bi0.5K0.5)TiO3–LiNbO3 relaxor ferroelectric ceramics , 2013 .

[21]  Y. Sasson,et al.  A new anhydrous bismuth potassium nitrate, K3Bi2(NO3)9: Synthesis, structure characterization and thermal decomposition , 2012 .

[22]  A. Castro,et al.  Ferroelectric phases and relaxor states in the novel lead-free (1 − x) Bi1/2K1/2TiO3 − x BiScO3 system (0 ≤ x ≤ 0.3) , 2012, Journal of Materials Science.

[23]  X. Tan,et al.  The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics , 2011 .

[24]  Wook Jo,et al.  On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3 , 2011 .

[25]  Xiaoli Wang,et al.  Dielectric and polar order behaviors of BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramics , 2011 .

[26]  Y. Noguchi,et al.  Structural and piezoelectric properties of high-density (Bi0.5K0.5)TiO3–BiFeO3 ceramics , 2010 .

[27]  N. Setter,et al.  Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy , 2010, 1003.0660.

[28]  Aman Ullah,et al.  Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics , 2010 .

[29]  A. Senyshyn,et al.  Phases in the (1 − x)Na0.5Bi0.5TiO3–(x)CaTiO3 system , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  C. Ang,et al.  High remnant polarization in (Sr0.7Bi0.2)TiO3–(Na0.5Bi0.5)TiO3 solid solutions , 2009 .

[31]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[32]  Xiaoli Wang,et al.  Dielectric and ferroelectric properties of (BixBa1−x)(Znx/2Ti1−x/2)O3 ceramics , 2009 .

[33]  I. Molodetsky,et al.  Crystal Chemistry of Complex Perovskites: New Cation-Ordered Dielectric Oxides , 2008 .

[34]  J. Holc,et al.  Transition between the ferroelectric and relaxor states in0.8Pb(Mg1∕3Nb2∕3)O3−0.2PbTiO3ceramics , 2006 .

[35]  L. Pardo,et al.  Transition between the relaxor and ferroelectric states for (1−x)Pb(Mg1∕3Nb2∕3)O3–xPbTiO3 with x=0.2 and 0.3 polycrystalline aggregates , 2005 .

[36]  Hajime Nagata,et al.  Ferroelectric and Piezoelectric Properties of (Bi1/2K1/2)TiO3 Ceramics , 2005 .

[37]  Chao-Nan Xu,et al.  Large electrostriction near the solubility limit in BaTiO3–CaTiO3 ceramics , 2005 .

[38]  H. Nagata,et al.  Piezoelectric Properties of BaTiO3–(Bi1/2K1/2)TiO3 Ferroelectric Ceramics , 2004 .

[39]  J. Kreisel,et al.  An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 x1) solid solution , 2000 .

[40]  Etsuo Otsuki,et al.  Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Systems , 1999 .

[41]  A. Tagantsev,et al.  The Spontaneous Relaxor-Ferroelectric Transition of Pb(Sc0.5ta0.5)O3 , 1993 .

[42]  M. Fontana,et al.  Raman spectrum in PbTiO3 re-examined: dynamics of the soft phonon and the central peak , 1991 .

[43]  N. Setter,et al.  The contribution of structural disorder to diffuse phase transitions in ferroelectrics , 1980 .

[44]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .