On vertex-pancyclicity and edge-pancyclicity of the WK-Recursive network

Abstract In this paper, we study the pancyclic properties of the WK-Recursive networks. We show that a WK-Recursive network with amplitude W and level L is vertex-pancyclic for W  ⩾ 6. That is, each vertex on them resides in cycles of all lengths ranging from 3 to N , where N is the size of the interconnection network. On the other hand, we also investigate the m -edge-pancyclicity of the WK-Recursive network. We show that the WK-Recursive network is strictly 3 × 2 L −1 -edge-pancyclic for W  ⩾ 7 and L  ⩾ 1. That is, each edge on them resides in cycles of all lengths ranging from 3 × 2 L −1 to N ; and the value 3 × 2 L −1 reaches the lower bound of the problem.

[1]  Vittorio Scarano,et al.  Embedding Graphs onto the Supercube , 1995, IEEE Trans. Computers.

[2]  Myung M. Bae,et al.  Resource Placement in Torus-Based Networks , 1997, IEEE Trans. Computers.

[3]  Lih-Hsing Hsu,et al.  Node-pancyclicity and edge-pancyclicity of hypercube variants , 2007, Inf. Process. Lett..

[4]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[5]  Hussein T. Mouftah,et al.  Topological properties of WK-recursive networks , 1990, [1990] Proceedings. Second IEEE Workshop on Future Trends of Distributed Computing Systems.

[6]  Jun-Ming Xu,et al.  Edge-pancyclicity of Möbius cubes , 2005, Inf. Process. Lett..

[7]  Lutz Volkmann,et al.  Vertex 6-pancyclic in-tournaments , 2004, Discret. Math..

[8]  Gary Chartrand,et al.  Applied and algorithmic graph theory , 1992 .

[9]  Lin Yen-Chun,et al.  On balancing sorting on a linear array , 1993 .

[10]  C. Sanges,et al.  A recursively scalable network VLSI implementation , 1988, Future Gener. Comput. Syst..

[11]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[12]  Jung-Sheng Fu,et al.  Hamiltonian connectivity of the WK-recursive network with faulty nodes , 2008, Inf. Sci..

[13]  Yukio Shibata,et al.  Pancyclicity of recursive circulant graphs , 2002, Inf. Process. Lett..

[14]  Bora Uçar,et al.  Task assignment in heterogeneous computing systems , 2006, J. Parallel Distributed Comput..

[15]  David R. O'Hallaron Uniform Approach for Solving some Classical Problems on a Linear Array , 1991, IEEE Trans. Parallel Distributed Syst..

[16]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004 .

[17]  Kyung-Yong Chwa,et al.  Hamiltonian properties on the class of hypercube-like networks , 2004, Inf. Process. Lett..

[18]  Jung-Sheng Fu Hamiltonicity of the WK-recursive network with and without faulty nodes , 2005, IEEE Transactions on Parallel and Distributed Systems.

[19]  Gen-Huey Chen,et al.  Hypercomplete : A pancyclic recursive topology for large-scale distributed multicomputer systems , 2000 .

[20]  Arkady Kanevsky,et al.  Embedding rings in recursive networks , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[21]  Jywe-Fei Fang,et al.  The m-pancycle-connectivity of a WK-Recursive network , 2007, Inf. Sci..

[22]  Hsing-Lung Chen,et al.  Efficient Resource Placement in Hypercubes Using Multiple-Adjacency Codes , 1994, IEEE Trans. Computers.