Feature Selection for Shape-Based Classification of Biological Objects

This paper introduces a method for selecting subsets of relevant statistical features in biological shape-based classification problems. The method builds upon existing feature selection methodology by introducing a heuristic that favors the geometric locality of the selected features. This heuristic effectively reduces the combinatorial search space of the feature selection problem. The new method is tested on synthetic data and on clinical data from a study of hippocampal shape in schizophrenia. Results on clinical data indicate that features describing the head of the right hippocampus are most relevant for discrimination.

[1]  Jerry L Prince,et al.  A computerized approach for morphological analysis of the corpus callosum. , 1996, Journal of computer assisted tomography.

[2]  M W Vannier,et al.  Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. , 1997, Radiology.

[3]  Jan M. Van Campenhout,et al.  On the Possible Orderings in the Measurement Selection Problem , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[6]  S. Pizer,et al.  Statistical shape characterization using the medial representation , 2003 .

[7]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[8]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[9]  Tommi S. Jaakkola,et al.  Feature Selection and Dualities in Maximum Entropy Discrimination , 2000, UAI.

[10]  J. Gower Generalized procrustes analysis , 1975 .

[11]  David W. Aha,et al.  A Comparative Evaluation of Sequential Feature Selection Algorithms , 1995, AISTATS.

[12]  Paul S. Bradley,et al.  Feature Selection via Mathematical Programming , 1997, INFORMS J. Comput..

[13]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Ron Kikinis,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002 , 2002, Lecture Notes in Computer Science.

[15]  Paul A. Yushkevich,et al.  Multiscale deformable model segmentation and statistical shape analysis using medial descriptions , 2002, IEEE Transactions on Medical Imaging.

[16]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[17]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[18]  Martin Styner,et al.  Shape versus Size: Improved Understanding of the Morphology of Brain Structures , 2001, MICCAI.

[19]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[20]  Wiro J. Niessen,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001 , 2001, Lecture Notes in Computer Science.

[21]  W. Eric L. Grimson,et al.  Statistical Shape Analysis Using Fixed Topology Skeletons: Corpus Callosum Study , 1999, IPMI.

[22]  Paul A. Yushkevich,et al.  Intuitive, Localized Analysis of Shape Variability , 2001, IPMI.

[23]  M. Miller,et al.  Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. , 2002, The American journal of psychiatry.

[24]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[25]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[26]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[27]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Pat Langley,et al.  Editorial: On Machine Learning , 1986, Machine Learning.

[29]  Guido Gerig,et al.  Combined Boundary-Medial Shape Description of Variable Biological Objects , 2001 .

[30]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[31]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  W. Eric L. Grimson,et al.  Discriminative Analysis for Image-Based Studies , 2002, MICCAI.

[33]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  R. Kikinis,et al.  Amygdala–hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data , 2002, Psychiatry Research: Neuroimaging.

[35]  Paul S. Bradley,et al.  Parsimonious Least Norm Approximation , 1998, Comput. Optim. Appl..

[36]  Paul A. Yushkevich,et al.  Continuous medial representations for geometric object modeling in 2D and 3D , 2003, Image Vis. Comput..

[37]  Michael I. Miller,et al.  On The Geometry and Shape of Brain Sub-Manifolds , 1997, Int. J. Pattern Recognit. Artif. Intell..

[38]  Guido Gerig,et al.  Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models , 1996, Medical Image Anal..