Nanochannels for electrical biosensing

This review shows the recent trends on the use of both single and array nanochannels for electrical biosensing applications. Some general considerations on the principles of the stochastic sensing, together with an overview about the common routes for nanochannels preparation before focusing on the applications for DNA, protein, virus, toxin and other analytes detection are given. Emerging materials used to obtain nanochannels, such as graphene and its analogues as well as novel systems based on the use of nanoparticles in combination with nanochannels are discussed. Aspects related to the analytical performance of the developed devices are also discussed. Finally prospects for future improvements and applications of this technology are included.

[1]  E. Llobet,et al.  Tungsten trioxide sensing layers on highly ordered nanoporous alumina template , 2006 .

[2]  Claudia Steinem,et al.  Pore-Suspending Lipid Bilayers on Porous Alumina Investigated by Electrical Impedance Spectroscopy , 2003 .

[3]  M. Martinho,et al.  Thermal unfolding of proteins probed at the single molecule level using nanopores. , 2012, Analytical chemistry.

[4]  János Mizsei,et al.  Humidity sensor structures with thin film porous alumina for on-chip integration , 2009 .

[5]  Liang Wang,et al.  Nanopore stochastic detection: diversity, sensitivity, and beyond. , 2013, Accounts of chemical research.

[6]  G. Tonini,et al.  "DNA-Dressed NAnopore" for complementary sequence detection. , 2011, Biosensors & bioelectronics.

[7]  L. P. Hromada,et al.  Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. , 2008, Lab on a chip.

[8]  Krishna Kant,et al.  Impedance nanopore biosensor: influence of pore dimensions on biosensing performance. , 2014, The Analyst.

[9]  L. Jan Ion Channels—Molecules in Action , 1996, Cell.

[10]  P. Annibale,et al.  ssDNA binding reveals the atomic structure of graphene. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  Pavel Takmakov,et al.  Sensing DNA hybridization via ionic conductance through a nanoporous electrode. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[13]  Zhao Wang,et al.  Hollow Urchin‐like ZnO thin Films by Electrochemical Deposition , 2010, Advanced materials.

[14]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[15]  M. Akeson,et al.  Discrimination among protein variants using an unfoldase-coupled nanopore. , 2014, ACS nano.

[16]  M. Niederweis,et al.  Single-molecule DNA detection with an engineered MspA protein nanopore , 2008, Proceedings of the National Academy of Sciences.

[17]  Josep Ferré-Borrull,et al.  Photoluminescent enzymatic sensor based on nanoporous anodic alumina. , 2012, ACS applied materials & interfaces.

[18]  U. Rant,et al.  Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. , 2010, Nano letters.

[19]  J. Pallarès,et al.  Nanoporous anodic alumina obtained without protective oxide layer by hard anodization , 2012 .

[20]  Arben Merkoçi,et al.  Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. , 2015, Biosensors & bioelectronics.

[21]  X. Guan,et al.  Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. , 2010, Analytica chimica acta.

[22]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[23]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[24]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[25]  Stefan Matile,et al.  Recent synthetic ion channels and pores , 2004 .

[26]  Weihong Tan,et al.  DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity , 2004, Science.

[27]  H. Bayley,et al.  Functional engineered channels and pores (Review) , 2004, Molecular membrane biology.

[28]  Nicholas A. W. Bell,et al.  Specific Protein Detection Using Designed DNA Carriers and Nanopores , 2015, Journal of the American Chemical Society.

[29]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[30]  J. Reiner,et al.  Nanoscopic porous sensors. , 2008, Annual review of analytical chemistry.

[31]  M. Schwartz,et al.  The adsorption of coliphage lambda to its host: effect of variations in the surface density of receptor and in phage-receptor affinity. , 1976, Journal of molecular biology.

[32]  A. Oppenheim,et al.  Docking of a single phage lambda to its membrane receptor maltoporin as a time-resolved event. , 2006, Journal of molecular biology.

[33]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[34]  E. Thomas,et al.  Robust block copolymer mask for nanopatterning polymer films. , 2010, ACS nano.

[35]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[36]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[37]  Chee Seng Toh,et al.  Impedimetric DNA Biosensor Based on a Nanoporous Alumina Membrane for the Detection of the Specific Oligonucleotide Sequence of Dengue Virus , 2013, Sensors.

[38]  Jinyun Liu,et al.  A novel porous anodic alumina based capacitive sensor towards trace detection of PCBs , 2011 .

[39]  Makusu Tsutsui,et al.  Controlling DNA translocation through gate modulation of nanopore wall surface charges. , 2011, ACS nano.

[40]  Qing Zhao,et al.  Boron Nitride Nanopores: Highly Sensitive DNA Single‐Molecule Detectors , 2013, Advanced materials.

[41]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[42]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[43]  A. Sellinger,et al.  Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates on ITO glass. , 2008, ACS nano.

[44]  N. Billington,et al.  Label-Free, All-Optical Detection, Imaging, and Tracking of a Single Protein , 2014, Nano letters.

[45]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[46]  H. Bayley,et al.  Single-molecule site-specific detection of protein phosphorylation with a nanopore , 2014, Nature Biotechnology.

[47]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[48]  Hongzhi Xie,et al.  A Genetically Encoded Pore for the Stochastic Detection of a Protein Kinase , 2006, Chembiochem : a European journal of chemical biology.

[49]  S. Joo,et al.  Synthesis and characterization of mesoporous carbon for fuel cell applications , 2007 .

[50]  Frances S. Ligler,et al.  Analytical chemistry: Home diagnostics to music , 2008, Nature.

[51]  N. Aluru,et al.  Electromechanical Signatures for DNA Sequencing through a Mechanosensitive Nanopore. , 2015, The journal of physical chemistry letters.

[52]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[53]  S. Jacobson,et al.  Characterization of hepatitis B virus capsids by resistive-pulse sensing. , 2011, Journal of the American Chemical Society.

[54]  A. Romano-Rodríguez,et al.  Dual-beam focused ion beam (FIB): A prototyping tool for micro and nanofabrication , 2007 .

[55]  Hideki Tanaka,et al.  Preparation of Porous Material by Replacing Microstructure of Anodic Alumina Film with Metal , 1990 .

[56]  A. Meller,et al.  DNA sequencing and bar‐coding using solid‐state nanopores , 2012, Electrophoresis.

[57]  Kevin Ke,et al.  Submicrometer pore-based characterization and quantification of antibody-virus interactions. , 2006, Small.

[58]  Alfredo de la Escosura-Muñiz,et al.  Immunosensing using nanoparticles , 2010 .

[59]  J. Betton,et al.  Unfolding of proteins and long transient conformations detected by single nanopore recording. , 2007, Physical review letters.

[60]  Hai‐Chen Wu,et al.  Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore. , 2011, Journal of the American Chemical Society.

[61]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[62]  F. Simmel,et al.  Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores. , 2011, Nano letters.

[63]  W. Ye,et al.  Nanoporous membrane based impedance sensors to detect the enzymatic activity of botulinum neurotoxin A. , 2013, Journal of materials chemistry. B.

[64]  J. T. Rodgers,et al.  Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. , 2003, Nucleic acids research.

[65]  J. Ferrer,et al.  Graphene sculpturene nanopores for DNA nucleobase sensing. , 2014, The journal of physical chemistry. B.

[66]  R. Benz,et al.  Generation of artificial channels by multimerization of β-strands from natural porin , 2011, Biological chemistry.

[67]  H. Bayley Membrane-protein structure: Piercing insights , 2009, Nature.

[68]  A. Marziali,et al.  A nanosensor for transmembrane capture and identification of single nucleic Acid molecules. , 2004, Biophysical journal.

[69]  Werasak Surareungchai,et al.  Nanochannels for diagnostic of thrombin-related diseases in human blood. , 2013, Biosensors & bioelectronics.

[70]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Yu Zhang,et al.  A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification , 2014 .

[72]  J. Zuo,et al.  DNA Sensing Using Nanocrystalline Surface‐Enhanced Al2O3 Nanopore Sensors , 2010, Advanced functional materials.

[73]  Jungsuk Kim,et al.  Recent advances in nanopore sequencing , 2012, Electrophoresis.

[74]  P. Renaud,et al.  Impedance sensing of DNA immobilization and hybridization by microfabricated alumina nanopore membranes , 2015 .

[75]  Stefan Howorka,et al.  Stochastic detection of monovalent and bivalent protein-ligand interactions. , 2004, Angewandte Chemie.

[76]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Jörg P Kutter,et al.  Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. , 2011, Analytical chemistry.

[78]  P. Ordejón,et al.  Capacitive DNA Detection Driven by Electronic Charge Fluctuations in a Graphene Nanopore , 2015 .

[79]  Arben Merkoçi,et al.  Nanochannels preparation and application in biosensing. , 2012, ACS nano.

[80]  Shusheng Zhang,et al.  Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. , 2008, Analytical chemistry.

[81]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[82]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[83]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[84]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[85]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[86]  L. Qian,et al.  Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering , 2011 .

[87]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[88]  R. Bashir,et al.  Electron beam induced local crystallization of HfO2 nanopores for biosensing applications. , 2013, Nanoscale.

[89]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[90]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[91]  DNA Translocation through Graphene Nanopores , 2011 .

[92]  D. Branton,et al.  Characterization of nucleic acids by nanopore analysis. , 2002, Accounts of chemical research.

[93]  Jacob K Rosenstein,et al.  High-bandwidth protein analysis using solid-state nanopores. , 2014, Biophysical journal.

[94]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[95]  Alfredo de la Escosura-Muñiz,et al.  Label-free voltammetric immunosensor using a nanoporous membrane based platform , 2010 .

[96]  S. Bezrukov,et al.  Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. , 1995, Biophysical journal.

[97]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[98]  S. Si,et al.  Study on the activity and stability of urease immobilized onto nanoporous alumina membranes , 2008 .

[99]  Dusan Losic,et al.  Nanoporous anodic aluminium oxide membranes with layered surface chemistry. , 2009, Chemical communications.

[100]  Jongin Hong,et al.  Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[101]  Meni Wanunu,et al.  Nanopore based sequence specific detection of duplex DNA for genomic profiling. , 2010, Nano letters.

[102]  E. Pop,et al.  Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. , 2012, ACS nano.

[103]  Randy F. Stout,et al.  Nanopore Sensing of Botulinum Toxin Type B by Discriminating an Enzymatically Cleaved Peptide from a Synaptic Protein Synaptobrevin 2 Derivative , 2014, ACS applied materials & interfaces.

[104]  V. Mussi,et al.  Selective protein detection with a dsLNA-functionalized nanopore. , 2015, Biosensors & bioelectronics.

[105]  David Stoddart,et al.  Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore , 2009, Proceedings of the National Academy of Sciences.

[106]  Shuping Xu,et al.  Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography. , 2012, Small.

[107]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[108]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[109]  Lydia L. Sohn,et al.  An Artificial Nanopore for Molecular Sensing , 2003 .

[110]  Pavel Takmakov,et al.  Hydrothermally shrunk alumina nanopores and their application to DNA sensing. , 2006, The Analyst.

[111]  J. Elias,et al.  Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[112]  Dusan Losic,et al.  Nanoporous anodic aluminum oxide for chemical sensing and biosensors , 2013 .

[113]  Sergey M. Bezrukov,et al.  Counting polymers moving through a single ion channel , 1994, Nature.

[114]  Arben Merkoçi,et al.  A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. , 2011, Small.

[115]  Dusan Losic,et al.  Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) ions. , 2013, ACS applied materials & interfaces.

[116]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[117]  Li-Qun Gu,et al.  Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. , 2005, Chemistry & biology.

[118]  Cees Dekker,et al.  Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. , 2013, ACS nano.

[119]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[120]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[121]  S. Bezrukov,et al.  Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. , 1993, Physical review letters.

[122]  Alfredo de la Escosura-Muñiz,et al.  Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing , 2015, Nano Research.

[123]  Jacob J. Schmidt,et al.  Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. , 2009, ACS nano.

[124]  Yu Zhang,et al.  A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane , 2011 .

[125]  Aline Debrassi,et al.  Stability of (bio)functionalized porous aluminum oxide. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[126]  Alfredo de la Escosura-Muñiz,et al.  Electrochemical analysis with nanoparticle-based biosystems , 2008 .

[127]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[128]  J. Edel,et al.  New developments in nanopore research—from fundamentals to applications , 2010, Journal of Physics: Condensed Matter.

[129]  Arben Merkoçi,et al.  Nanoparticles-based strategies for DNA, protein and cell sensors. , 2010, Biosensors & bioelectronics.

[130]  Jay X. Tang,et al.  Stiff filamentous virus translocations through solid-state nanopores , 2013, Nature Communications.

[131]  Muhammad Raza Shah,et al.  Synthetic ion channels and pores (2004-2005). , 2006, Chemical Society reviews.

[132]  Lei Jiang,et al.  Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. , 2012, Journal of the American Chemical Society.

[133]  Dusan Losic,et al.  Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. , 2013, Analytical chemistry.

[134]  A. Merkoçi,et al.  Assembled nanoparticles-based nanochannels onto a plastic flexible substrate for label-free immunosensing , 2014 .

[135]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[136]  Silvia Hernández-Ainsa,et al.  Single protein molecule detection by glass nanopores. , 2013, ACS nano.

[137]  M. Langecker,et al.  A pore-cavity-pore device to trap and investigate single nanoparticles and DNA molecules in a femtoliter compartment: confined diffusion and narrow escape. , 2011, Nano letters.

[138]  David J Munroe,et al.  Third-generation sequencing fireworks at Marco Island , 2010, Nature Biotechnology.

[139]  Jason Campbell,et al.  Disease detection and management via single nanopore-based sensors. , 2012, Chemical reviews.

[140]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[141]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[142]  Jugal Kishore Sahoo,et al.  Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. , 2011, Journal of the American Chemical Society.

[143]  Alfredo de la Escosura-Muñiz,et al.  Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. , 2010, Chemical communications.

[144]  A. Merkoçi,et al.  Protein and DNA Electrochemical Sensing Using Anodized Aluminum Oxide Nanochannel Arrays , 2015 .