Microfluidic PCR Combined with Pyrosequencing for Identification of Allelic Variants with Phenotypic Associations among Targeted Salmonella Genes

ABSTRACT A novel targeted massive parallel sequencing approach identified genetic variation in eight known or predicted fimbrial adhesins for 46 Salmonella strains. The results highlight associations between specific adhesin alleles, host species, and antimicrobial resistance. The differentiation of allelic variants has potential applications for diagnostic microbiology and epidemiological investigations.

[1]  R. Edwards,et al.  Diversification of the Salmonella Fimbriae: A Model of Macro- and Microevolution , 2012, PloS one.

[2]  Errol Strain,et al.  High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach , 2012, BMC Genomics.

[3]  Sandra Pelletier,et al.  Conservation of Salmonella Infection Mechanisms in Plants and Animals , 2011, PloS one.

[4]  Fernando de la Cruz,et al.  The Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation , 2011, PLoS genetics.

[5]  T. Cebula,et al.  Comparative Genomics of 28 Salmonella enterica Isolates: Evidence for CRISPR-Mediated Adaptive Sublineage Evolution , 2011, Journal of bacteriology.

[6]  M. Widdowson,et al.  Foodborne Illness Acquired in the United States—Major Pathogens , 2011, Emerging infectious diseases.

[7]  W. Rabsch,et al.  Evolution and Population Structure of Salmonella enterica Serovar Newport , 2010, Journal of Bacteriology.

[8]  J. Jaworski,et al.  The high-adhesive properties of the FimH adhesin of Salmonella enterica serovar Enteritidis are determined by a single F118S substitution. , 2010, Microbiology.

[9]  Martin Wiedmann,et al.  Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes , 2009, BMC Evolutionary Biology.

[10]  Huanchun Chen,et al.  FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. , 2009, Microbiology.

[11]  A. Lynne,et al.  Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. , 2008, Journal of animal science.

[12]  J. Casadesús,et al.  Conjugal Transfer of the Salmonella enterica Virulence Plasmid in the Mouse Intestine , 2008, Journal of bacteriology.

[13]  Peter Gerner-Smidt,et al.  Foodborne disease trends and reports. , 2008, Foodborne pathogens and disease.

[14]  Anna Laskowska,et al.  Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. , 2006, Microbiology.

[15]  A. Hammerum,et al.  Conjugal transfer of aminoglycoside and macrolide resistance between Enterococcus faecium isolates in the intestine of streptomycin-treated mice. , 2004, FEMS microbiology letters.

[16]  B. Love,et al.  Molecular Characterization of Cephalosporin-Resistant Salmonella enterica Serotype Newport Isolates from Animals in Pennsylvania , 2002, Journal of Clinical Microbiology.

[17]  S. Clegg,et al.  Differential binding to and biofilm formation on, HEp‐2 cells by Salmonella enterica Serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster , 2002, Molecular microbiology.

[18]  D. Platt,et al.  Detection and characterisation of integrons in Salmonella enterica serotype enteritidis. , 2000, FEMS microbiology letters.

[19]  R. Kingsley,et al.  Host adaptation and the emergence of infectious disease: the Salmonella paradigm , 2000, Molecular microbiology.

[20]  E. Stobberingh,et al.  In-vivo transfer of resistance plasmids in rat, human or pig-derived intestinal flora using a rat model. , 1995, The Journal of antimicrobial chemotherapy.