Conditions of Exact Null Controllability and the Problem of Complete Stabilizability for Time-Delay Systems

For a class of linear time-delay control systems satisfying the property of completability of the generalized eigenvectors we prove that the problems of complete stabilizability and exact null controllability are equivalent.

[1]  Kazufumi Ito,et al.  A linear quadratic optimal control for neutral systems , 1985 .

[2]  Dietmar A. Salamon,et al.  On control and observation of neutral systems , 1982 .

[3]  Luciano Pandolfi,et al.  Stabilization of neutral functional differential equations , 1976 .

[4]  Keiji Watanabe Further study of spectral controllability of systems with multiple commensurate delays in state variables , 1984 .

[5]  Zbigniew Bartosiewicz,et al.  Density of Images of Semigroup Operators for Linear Neutral Functional Differential Equations , 1980 .

[6]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[7]  Rabah Rabah,et al.  The Analysis of Exact Controllability of Neutral-Type Systems by the Moment Problem Approach , 2007, SIAM J. Control. Optim..

[8]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[9]  D. Salamon On controllability and observability of time delay systems , 1984 .

[10]  Luciano Pandolfi,et al.  Null controllability of a class of functional differential systems , 1988 .

[11]  Rabah Rabah,et al.  Exact null controllability, complete stabilizability and continuous final observability of neutral type systems , 2016, Int. J. Appl. Math. Comput. Sci..

[12]  Rabah Rabah,et al.  On strong regular stabilizability for linear neutral type systems , 2008 .

[13]  Rabah Rabah,et al.  Stability and stabilizability of mixed retarded-neutral type systems , 2009 .

[14]  John A. Burns,et al.  Linear Functional Differential Equations as Semigroups on Product Spaces , 1983 .

[15]  R. Rabah,et al.  On exponential stabilizability of linear neutral systems , 2001 .

[16]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[17]  D. Salamon Observability of nontrivial small solutions for neutral systems , 1983 .

[18]  Yi Zeng,et al.  On exact controllability and complete stabilizability for linear systems , 2013, Appl. Math. Lett..

[19]  Sergei Avdonin,et al.  Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems , 1995 .

[20]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[21]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[22]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[23]  M. C. Delfour,et al.  The Largest Class of Hereditary Systems Defining a C 0 Semigroup on the Product Space , 1980, Canadian Journal of Mathematics.

[24]  C. E. Langenhop,et al.  Criteria for Function Space Controllability of Linear Neutral Systems , 1976 .

[25]  D. O'Connor,et al.  On stabilization by state feedback for neutral differential difference equations , 1983 .

[26]  F. Colonius On approximate and exact null controllability of delay systems , 1984 .

[27]  V. E. Khartovskii,et al.  Complete controllability and controllability for linear autonomous systems of neutral type , 2013, Autom. Remote. Control..

[28]  Rabah Rabah,et al.  Exact controllability and complete stabilizability for linear systems in Hilbert spaces , 1997 .

[29]  A functional model approach to linear neutral functional differential equations , 1997 .

[30]  Wim Michiels Stability and stabilization of time-delay systems , 2002 .

[31]  Rabah Rabah,et al.  Stability analysis of neutral type systems in Hilbert space , 2005 .

[32]  Rabah Rabah,et al.  К вопросу точной управляемости систем с запаздыванием нейтрального типа , 2016 .