Semidefinite relaxations for partitioning, assignment and ordering problems

Semidefinite optimization is a strong tool in the study of NP-hard combinatorial optimization problems. On the one hand, semidefinite optimization problems are in principle solvable in polynomial time (with fixed precision), on the other hand, their modeling power allows to naturally handle quadratic constraints. Contrary to linear optimization with the efficiency of the Simplex method, the algorithmic treatment of semidefinite problems is much more subtle and also practically quite expensive. This survey-type article is meant as an introduction for a non-expert to this exciting area. The basic concepts are explained on a mostly intuitive level, and pointers to advanced topics are given. We provide a variety of semidefinite optimization models on a selection of graph optimization problems and give a flavour of their practical impact.

[1]  Franz Rendl,et al.  Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and Equipartition , 2006, Math. Program..

[2]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[3]  D. V. Pasechnik,et al.  On approximate graph colouring and MAX-k-CUT algorithms based on the theta-function , 2002 .

[4]  Martin Grötschel,et al.  Facets of the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..

[5]  Franz Rendl,et al.  Semidefinite Relaxations for Integer Programming , 2010, 50 Years of Integer Programming.

[6]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[7]  Michael Jünger,et al.  Journal of Graph Algorithms and Applications 2-layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms , 2022 .

[8]  Mauro Dell'Amico,et al.  8. Quadratic Assignment Problems: Algorithms , 2009 .

[9]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[10]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[11]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[12]  M. Deza,et al.  The hypermetric cone is polyhedral , 1993, Comb..

[13]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[14]  Uri Zwick,et al.  A Unified Framework for Obtaining Improved Approximation Algorithms for Maximum Graph Bisection Problems , 2001, IPCO.

[15]  Andrew A. Kennings,et al.  A semidefinite optimization approach for the single-row layout problem with unequal dimensions , 2005, Discret. Optim..

[16]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[17]  Michael Jünger,et al.  An SDP approach to multi-level crossing minimization , 2012, JEAL.

[18]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[19]  David P. Williamson,et al.  Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming , 2001, STOC '01.

[20]  Franz Rendl,et al.  Semidefinite programming and integer programming , 2002 .

[21]  Franz Rendl,et al.  Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations , 2009, Math. Program..

[22]  Franz Rendl,et al.  Semidefinite Programming and Graph Equipartition , 1998 .

[23]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[24]  Gerold Jäger,et al.  Improved Approximation Algorithms for Maximum Graph Partitioning Problems , 2005, J. Comb. Optim..

[25]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[26]  Miguel F. Anjos,et al.  A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem , 2011, Ann. Oper. Res..

[27]  Sven Leyffer,et al.  Mixed Integer Nonlinear Programming , 2011 .

[28]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[29]  Frank Vallentin,et al.  Lecture notes: Semidefinite programs and harmonic analysis , 2008, 0809.2017.

[30]  Michael Jünger,et al.  A Polyhedral Approach to the Multi-Layer Crossing Minimization Problem , 1997, GD.

[31]  Franz Rendl,et al.  Semidefinite relaxations of ordering problems , 2013, Math. Program..

[32]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[33]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[34]  Subhash Khot On the Unique Games Conjecture (Invited Survey) , 2010, Computational Complexity Conference.

[35]  Alan M. Frieze,et al.  Improved approximation algorithms for MAXk-CUT and MAX BISECTION , 1995, Algorithmica.

[36]  L. Tunçel Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization , 2010 .

[37]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[38]  Christoph Helmberg,et al.  Fixing Variables in Semidefinite Relaxations , 1997, ESA.

[39]  Franz Rendl,et al.  Bounds for the quadratic assignment problem using the bundle method , 2007, Math. Program..

[40]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[41]  Frédéric Roupin,et al.  From Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems , 2004, J. Comb. Optim..

[42]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[43]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[44]  Miguel F. Anjos,et al.  Semidefinite Optimization Approaches for Satisfiability and Maximum-Satisfiability Problems , 2005, J. Satisf. Boolean Model. Comput..

[45]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[46]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[47]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[48]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[49]  J. William Helton,et al.  Semidefinite representation of convex sets , 2007, Math. Program..

[50]  William M. Springer Review of the traveling salesman problem: a computational study by Applegate, Bixby, Chvátal, and Cook (Princeton University Press) , 2009, SIGA.

[51]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[52]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[53]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[54]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[55]  László Lovász,et al.  Semidefinite Programs and Combinatorial Optimization , 2003 .

[56]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[57]  A. Schrijver,et al.  The Traveling Salesman Problem , 2011 .

[58]  Frédéric Roupin,et al.  Solving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cluster problems to optimality with semidefi , 2012, Mathematical Programming.

[59]  Gerhard Reinelt,et al.  The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization , 2011 .

[60]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[61]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[62]  Christoph Buchheim,et al.  Exact Algorithms for the Quadratic Linear Ordering Problem , 2010, INFORMS J. Comput..

[63]  Uri Zwick,et al.  A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems , 2001, Random Struct. Algorithms.

[64]  Gerhard Reinelt,et al.  The Linear Ordering Problem , 2011 .

[65]  David P. Williamson,et al.  Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming , 2004, J. Comput. Syst. Sci..

[66]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[67]  Y. Nesterov Quality of semidefinite relaxation for nonconvex quadratic optimization , 1997 .

[68]  David L. Applegate,et al.  The traveling salesman problem , 2006 .

[69]  N. Z. Shor An approach to obtaining global extremums in polynomial mathematical programming problems , 1987 .

[70]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[71]  F. B A R A H O N A,et al.  EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING , 2005 .