Bilinear Generalized Approximate Message Passing—Part I: Derivation

In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case, which enables its application to matrix completion, robust PCA, dictionary learning, and related matrix-factorization problems. Here, in Part I of a two-part paper, we derive our Bilinear G-AMP (BiG-AMP) algorithm as an approximation of the sum-product belief propagation algorithm in the high-dimensional limit, where central-limit theorem arguments and Taylor-series approximations apply, and under the assumption of statistically independent matrix entries with known priors. In addition, we propose an adaptive damping mechanism that aids convergence under finite problem sizes, an expectation-maximization (EM)-based method to automatically tune the parameters of the assumed priors, and two rank-selection strategies. In Part II of the paper, we will discuss the specializations of EM-BiG-AMP to the problems of matrix completion, robust PCA, and dictionary learning, and we will present the results of an extensive empirical study comparing EM-BiG-AMP to state-of-the-art algorithms on each problem.

[1]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[2]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[3]  J. Boutros,et al.  Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[4]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[5]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[6]  Neil D. Lawrence,et al.  Non-linear matrix factorization with Gaussian processes , 2009, ICML '09.

[7]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[9]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[10]  Justin P. Haldar,et al.  Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization , 2009, IEEE Signal Processing Letters.

[11]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[12]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[13]  Volkan Cevher,et al.  Matrix Recipes for Hard Thresholding Methods , 2012, Journal of Mathematical Imaging and Vision.

[14]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[15]  Andrea Montanari,et al.  Graphical Models Concepts in Compressed Sensing , 2010, Compressed Sensing.

[16]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[17]  Olgica Milenkovic,et al.  SET: An algorithm for consistent matrix completion , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[18]  Philip Schniter,et al.  Turbo reconstruction of structured sparse signals , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[19]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[20]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[21]  C. Jutten,et al.  SRF: Matrix completion based on smoothed rank function , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[23]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[24]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[25]  Sundeep Rangan,et al.  Iterative Reconstruction of Rank-One Matrices in Noise , 2012 .

[26]  Giuseppe Caire,et al.  Iterative multiuser joint decoding: Unified framework and asymptotic analysis , 2002, IEEE Trans. Inf. Theory.

[27]  Florent Krzakala,et al.  Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.

[28]  John C. S. Lui,et al.  Online Robust Subspace Tracking from Partial Information , 2011, ArXiv.

[29]  Sundeep Rangan,et al.  Iterative estimation of constrained rank-one matrices in noise , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[30]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[31]  Daniel Kahneman,et al.  Probabilistic reasoning , 1993 .

[32]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[33]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[34]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part II: Applications , 2014, IEEE Transactions on Signal Processing.

[35]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[36]  Philip Schniter Approximate Message Passing for Bilinear Models , 2011 .

[37]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[38]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[39]  Aggelos K. Katsaggelos,et al.  Sparse Bayesian Methods for Low-Rank Matrix Estimation , 2011, IEEE Transactions on Signal Processing.

[40]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[41]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[42]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[43]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[44]  Henry D. Pfister,et al.  IMP: A message-passing algorithm for matrix completion , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[45]  Volkan Cevher,et al.  Compressive sensing under matrix uncertainties: An Approximate Message Passing approach , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[46]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[47]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[48]  Philip Schniter,et al.  Expectation-Maximization Gaussian-Mixture Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[49]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, ISIT.

[50]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[51]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[52]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[53]  Guillermo Sapiro,et al.  Efficient matrix completion with Gaussian models , 2010, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[54]  Philip Schniter,et al.  Hyperspectral image unmixing via bilinear generalized approximate message passing , 2013, Defense, Security, and Sensing.

[55]  Goran Marjanovic,et al.  On $l_q$ Optimization and Matrix Completion , 2012, IEEE Transactions on Signal Processing.

[56]  Yew Jin Lim Variational Bayesian Approach to Movie Rating Prediction , 2007 .

[57]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[58]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[59]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[60]  Volkan Cevher,et al.  Fixed Points of Generalized Approximate Message Passing With Arbitrary Matrices , 2016, IEEE Transactions on Information Theory.

[61]  Brendan J. Frey,et al.  A Revolution: Belief Propagation in Graphs with Cycles , 1997, NIPS.

[62]  Florent Krzakala,et al.  Phase diagram and approximate message passing for blind calibration and dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[63]  Sundeep Rangan,et al.  On the convergence of approximate message passing with arbitrary matrices , 2014, 2014 IEEE International Symposium on Information Theory.

[64]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[65]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[66]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).