Consistency of Maximum Likelihood and Pseudo-Likelihood Estimators for Gibbs Distributions

We prove that the Maximum Likelihood and Pseudo-likelihood estimators for the parameters of Gibbs distributions (equivalently Markov Random Fields) over ℤd, d≥l, are consistent even at points of “first” or “higher-order” phase transitions. The distributions are parametrized by points in a finite-dimensional Euclidean space ℝm, m≥l, and the single spin state space is either a finite set or a compact metric space. Also, the underlying interactions need not be of finite range.

[1]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[2]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[3]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[4]  D. K. Pickard Asymptotic inference for an Ising lattice III. Non-zero field and ferromagnetic states , 1979 .

[5]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Chellappa,et al.  Digital image restoration using spatial interaction models , 1982 .

[7]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[8]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  C. Malsburg,et al.  Statistical Coding and Short-Term Synaptic Plasticity: A Scheme for Knowledge Representation in the Brain , 1986 .

[11]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[12]  Donald Geman,et al.  Bayesian Image Analysis , 1986 .

[13]  B. Ripley Statistics, images, and pattern recognition , 1986 .

[14]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[17]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..