Improved modeling of permafrost dynamics in a GCM land‐surface scheme

[1] Global climate models (GCM) are frequently used to understand and predict future climate change, but most GCMs do not attempt to represent permafrost dynamics and its potentially critical feedbacks on climate. In this paper, we evaluate the Community Land Model (CLM3), which is a land-surface scheme, against observations and identify potential modifications to this model that improve fidelity of permafrost and soil temperature simulations. These modifications include increasing the total soil depth by adding new layers, incorporating a surface organic layer, and modifying the numerical scheme to include unfrozen water dynamics and more realistic phase change representation.

[1]  Vladimir E. Romanovsky,et al.  Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. , 2000 .

[2]  J. Christensen,et al.  Impact of global warming on permafrost conditions in a coupled GCM , 2002 .

[3]  Satya N. Atluri,et al.  Computational heat transfer , 1986 .

[4]  T. Osterkamp The recent warming of permafrost in Alaska , 2005 .

[5]  Dmitry J. Nicolsky,et al.  An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost , 2007 .

[6]  V. Romanovsky,et al.  Long‐term evaluation of the Hydro‐Thermodynamic Soil‐Vegetation Scheme's frozen ground/permafrost component using observations at Barrow, Alaska , 2006 .

[7]  C. Symon,et al.  Arctic climate impact assessment , 2005 .

[8]  A. A. Samarskii,et al.  Computational heat transfer , 1995 .

[9]  Vladimir E. Romanovsky,et al.  Permafrost: changes and impacts , 2001 .

[10]  Vladimir E. Romanovsky,et al.  Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic , 1997 .

[11]  Brian G. Thomas,et al.  Fixed grid techniques for phase change problems: A review , 1990 .

[12]  Global Soil Data Task,et al.  Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) , 2000 .

[13]  A. Lachenbruch,et al.  Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska , 1982 .

[14]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[15]  W. Collins,et al.  The Community Climate System Model: CCSM3 , 2004 .

[16]  Acia Impacts of a Warming Arctic: Arctic Climate Impact Assessment , 2004 .

[17]  E. S. Melnikov,et al.  Circum-Arctic map of permafrost and ground-ice conditions , 1997 .

[18]  David M. Lawrence,et al.  A projection of severe near‐surface permafrost degradation during the 21st century , 2005 .

[19]  Vladimir E. Romanovsky,et al.  Evidence for warming and thawing of discontinuous permafrost in Alaska , 1999 .

[20]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[21]  Peter E. Thornton,et al.  Technical Description of the Community Land Model (CLM) , 2004 .

[22]  J. Walsh,et al.  Permafrost dynamics in the 20th and 21st centuries along the East Siberian transect , 2004 .

[23]  O. Anisimov,et al.  PERMAFROST ZONATION AND CLIMATE CHANGE IN THE NORTHERN HEMISPHERE: RESULTS FROM TRANSIENT GENERAL CIRCULATION MODELS , 1997 .

[24]  K. Taylor,et al.  The Community Climate System Model , 2001 .

[25]  Duwayne M. Anderson,et al.  Geotechnical Engineering for Cold Regions , 1978 .