A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems

We address the problem of estimating the uncertainty in the solution of power grid inverse problems within the framework of Bayesian inference. We investigate two approaches, an adjoint-based method and a stochastic spectral method. These methods are used to estimate the maximum a posteriori point of the parameters and their variance, which quantifies their uncertainty. Within this framework, we estimate several parameters of the dynamic power system, such as generator inertias, which are not quantifiable in steady-state models. We illustrate the performance of these approaches on a 9-bus power grid example and analyze the dependence on measurement frequency, estimation horizon, perturbation size, and measurement noise. We assess the computational efficiency, and discuss the expected performance when these methods are applied to large systems.

[1]  Xiu Yang,et al.  Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..

[2]  Gareth Taylor,et al.  Inertia Estimation of the GB Power System Using Synchrophasor Measurements , 2015, IEEE Transactions on Power Systems.

[3]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[4]  Mihai Anitescu,et al.  Data-driven model for solar irradiation based on satellite observations , 2014 .

[5]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[6]  Tan Bui-Thanh,et al.  A Gentle Tutorial on Statistical Inversion using the Bayesian Paradigm , 2012 .

[7]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[8]  Abhinav Singh,et al.  Estimating dynamic model parameters for adaptive protection and control in power system , 2015, 2015 IEEE Power & Energy Society General Meeting.

[9]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..

[10]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[11]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[12]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[13]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[14]  Vladimir Terzija,et al.  Simultaneous Estimation of the Time of Disturbance and Inertia in Power Systems , 2014, IEEE Transactions on Power Delivery.

[15]  C.A. Canizares,et al.  On the parameter estimation and modeling of aggregate power system loads , 2004, IEEE Transactions on Power Systems.

[16]  L. Petzold,et al.  Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software☆ , 2002 .

[17]  V. Ajjarapu,et al.  A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling , 2009, IEEE Transactions on Power Systems.

[18]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[19]  N. Petra,et al.  Model Variational Inverse Problems Governed by Partial Differential Equations , 2011 .

[20]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[21]  Song Guo,et al.  Adaptive Parameter Estimation of Power System Dynamic Model Using Modal Information , 2014, IEEE Transactions on Power Systems.

[22]  Anthony O'Hagan,et al.  Uncertainty in prior elicitations: a nonparametric approach , 2007 .

[23]  Luca Daniel,et al.  Stochastic Testing Method for Transistor-Level Uncertainty Quantification Based on Generalized Polynomial Chaos , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Byoung-Kon Choi,et al.  Measurement-based dynamic load models: derivation, comparison, and validation , 2006, IEEE Transactions on Power Systems.

[25]  Konstantin Turitsyn,et al.  Probabilistic Power Flow Computation via Low-Rank and Sparse Tensor Recovery , 2015, ArXiv.

[26]  Ian A. Hiskens,et al.  Inverse Problems in Power Systems , 2001 .

[27]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[28]  Ian A. Hiskens,et al.  Power system modeling for inverse problems , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  R. L. Winkler,et al.  Scoring Rules for Continuous Probability Distributions , 1976 .

[30]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[31]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[32]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[33]  Emil M. Constantinescu,et al.  Evaluation of overlapping restricted additive schwarz preconditioning for parallel solution of very large power flow problems , 2013, HiPCNA-PG '13.

[34]  Eduard Muljadi,et al.  Synchrophasor Measurement-Based Wind Plant Inertia Estimation , 2013, 2013 IEEE Green Technologies Conference (GreenTech).

[35]  Graeme M. Burt,et al.  Switching Markov Gaussian Models for Dynamic Power System Inertia Estimation , 2016, IEEE Transactions on Power Systems.

[36]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.