Transcriptome-scale RNase-footprinting of RNA-protein complexes

Ribosome profiling is widely used to study translation in vivo, but not all sequence reads correspond to ribosome-protected RNA. Here we describe Rfoot, a computational pipeline that analyzes ribosomal profiling data and identifies native, nonribosomal RNA-protein complexes. We use Rfoot to precisely map RNase-protected regions within small nucleolar RNAs, spliceosomal RNAs, microRNAs, tRNAs, long noncoding (lnc)RNAs and 3′ untranslated regions of mRNAs in human cells. We show that RNAs of the same class can show differential complex association. Although only a subset of lncRNAs show RNase footprints, many of these have multiple footprints, and the protected regions are evolutionarily conserved, suggestive of biological functions.

[1]  A. Regev,et al.  Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins , 2015, eLife.

[2]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[3]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[4]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[5]  K. Struhl,et al.  A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. , 2010, Cancer cell.

[6]  R. Kurokawa,et al.  Long Noncoding RNAs , 2015, Springer Japan.

[7]  Daehyun Baek,et al.  mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. , 2014, Molecular cell.

[8]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[9]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[10]  Kevin Struhl,et al.  An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation , 2009, Cell.

[11]  C. Will,et al.  Spliceosome structure and function. , 2011, Cold Spring Harbor perspectives in biology.

[12]  Anna M. McGeachy,et al.  The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments , 2012, Nature Protocols.

[13]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[14]  R. Terns,et al.  Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs , 2007, Nature Reviews Molecular Cell Biology.

[15]  Cole Trapnell,et al.  RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome , 2014, Genome Biology.

[16]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[17]  G. Petsko Transformation , 2006, Genome Biology.

[18]  Robert A. Weinberg,et al.  Creation of human tumour cells with defined genetic elements , 1999, Nature.

[19]  R. Darnell,et al.  Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data , 2011, Nature Biotechnology.

[20]  Yu-Cheng T. Yang,et al.  Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae , 2013, Genome Biology.

[21]  Z. Kiss-László,et al.  Sequence and structural elements of methylation guide snoRNAs essential for site‐specific ribose methylation of pre‐rRNA , 1998, The EMBO journal.

[22]  A. Russell,et al.  An early evolutionary origin for the minor spliceosome , 2006, Nature.

[23]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[24]  Richard Bonneau,et al.  The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. , 2012, Molecular cell.

[25]  D. Peattie,et al.  Chemical probing of the tRNA--ribosome complex. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Tomaž Curk,et al.  The RNA-binding protein HuR (Elavl1) is essential for the B cell antibody response , 2015, Nature Immunology.

[27]  T. Hendrickson Recognizing the D-loop of transfer RNAs , 2001, Proceedings of the National Academy of Sciences of the United States of America.