Structural-acoustic Design of a Multi-functional Sandwich Panel in an Automotive Context

This article deals with the design and weight optimization of a multi-functional vehicle body panel in an automotive context. An existing vehicle design has provided functional design requirements regarding static, dynamic, and acoustic behavior of the components of a car roof. A novel, multifunctional panel is proposed which integrates the component requirements present in a traditional roof system within a single module. The acoustic properties of two configurations of the novel panel are examined using numerical methods including advanced poro-elastic modeling tools compatible with Nastran, and compared with numerical results of a finite element model of the existing construction.

[1]  Per Wennhage,et al.  Prediction of NVH behaviour of trimmed body components in the frequency range 100-500 Hz , 2010 .

[2]  Mohan D. Rao,et al.  Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes , 2003 .

[3]  Hyoung Gil Choi,et al.  A coupling analysis of interior noise of a vehicle with a roof-gap-trim effect , 1997 .

[4]  Colin H. Hansen,et al.  CALCULATING RESONANCE FREQUENCIES OF PERFORATED PANELS , 1996 .

[5]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[6]  Kevin R. Thomson,et al.  Optimization of Damping Treatment for Structure Borne Noise Reduction , 2003 .

[7]  P. Brook,et al.  Elastic properties of plates perforated by elliptical holes , 1991 .

[8]  Peter Göransson,et al.  Tailored acoustic and vibrational damping in porous solids - Engineering performance in aerospace applications , 2008 .

[9]  Enamul Haque,et al.  Designing strength, stiffness and acoustics in headliner substrate material , 2006, ATZautotechnology.

[10]  W. S. Hill,et al.  Effective Bending Properties for Stress Analysis of Rectangular Tubesheets , 1977 .

[11]  J. R. Stoll,et al.  Headliners and Other Interior Trim Parts Made of Thermoformable Urethane Foam Core Sandwiches , 1990 .

[12]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[13]  G. S. Cole,et al.  Light weight materials for automotive applications , 1995 .

[14]  J. M. Von Würtemberg,et al.  Lightweight materials for automotive applications , 1994 .

[15]  A Kropp,et al.  Beruecksichtigung von lokalen Daempfungseffekten bei der Akustikauslegung von Pkw-Karosserien / On the influence of local damping on the acoustic design of passenger car bodies , 2003 .

[16]  Per Wennhage,et al.  Structural : acoustic Design of a Multi-functional Sandwich Body Panel for Automotive Applications , 2008 .

[17]  Peter Göransson,et al.  Acoustic and vibrational damping in porous solids , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  B. T. Åström,et al.  Manufacturing of Polymer Composites , 1997 .

[19]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[20]  Youngjin Park,et al.  Active control of road booming noise in automotive interiors. , 2002, The Journal of the Acoustical Society of America.

[21]  D. S. Snyder,et al.  Utilizing optimized panel damping treatments to improve powertrain induced NVH and sound quality , 1995 .

[22]  L. Hervella-Nieto,et al.  Review in Sound Absorbing Materials , 2008 .