Imaging the Cortical Representation of Active Sensing in the Vibrissa System

Rodents explore the environment with their facial whiskers using active whisking to collect information about object location and identity. The sensory information gathered is processed in the vibrissa system, a hierarchical network of interacting brain regions, comprising brainstem nuclei, thalamus subdivisions and neocortical regions. In the neocortex, neural representations of whisking and touch are formed to guide and adapt behavior given the environmental context. The exact features of these representations and their spatiotemporal dynamics still remain elusive. In this chapter, we provide an overview of in vivo functional imaging techniques that enable the study of spatiotemporal profiles of cortical activity during whisking-based behavior. We discuss imaging applications covering the large scale as well as the level of local cellular circuits, with a special focus on studies employing two-photon calcium imaging. We summarize recent findings on the cortical representation of passive and active sensation and of task-relevant whisker dynamics.

[1]  J. Staiger,et al.  Persistence of Functional Sensory Maps in the Absence of Cortical Layers in the Somsatosensory Cortex of Reeler Mice , 2014, Cerebral cortex.

[2]  F. Helmchen,et al.  Steady or changing? Long-term monitoring of neuronal population activity , 2013, Trends in Neurosciences.

[3]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[4]  D. Tank,et al.  Functional Clustering of Neurons in Motor Cortex Determined by Cellular Resolution Imaging in Awake Behaving Mice , 2009, The Journal of Neuroscience.

[5]  Romain Brette,et al.  Late Emergence of the Vibrissa Direction Selectivity Map in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[6]  Sylvain Crochet,et al.  Synaptic Computation and Sensory Processing in Neocortical Layer 2/3 , 2013, Neuron.

[7]  Zachary F. Mainen,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, PLoS Biology.

[8]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[9]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[10]  Maik C. Stüttgen,et al.  The Head-fixed Behaving Rat—Procedures and Pitfalls , 2010, Somatosensory & motor research.

[11]  Mark J. Schnitzer,et al.  Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors , 2014, Nature Communications.

[12]  Bert Sakmann,et al.  Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo , 2014, Proceedings of the National Academy of Sciences.

[13]  Vincent A. Pieribone,et al.  Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe , 2012, Neuron.

[14]  Zengcai V. Guo,et al.  Neural coding during active somatosensation revealed using illusory touch , 2013, Nature Neuroscience.

[15]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[16]  J. Schiller,et al.  Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo , 2014, eLife.

[17]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[18]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[19]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[20]  F. Helmchen,et al.  Reorganization of cortical population activity imaged throughout long-term sensory deprivation , 2012, Nature Neuroscience.

[21]  C. Petersen,et al.  Membrane potential correlates of sensory perception in mouse barrel cortex , 2013, Nature Neuroscience.

[22]  R. Frostig,et al.  Naturalistic experience transforms sensory maps in the adult cortex of caged animals , 2004 .

[23]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[24]  Fritjof Helmchen,et al.  Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator , 2012, The Journal of physiology.

[25]  F. Helmchen,et al.  Barrel cortex function , 2013, Progress in Neurobiology.

[26]  Andreas T. Schaefer,et al.  Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo , 2011, Nature Neuroscience.

[27]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[28]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[29]  Thomas K. Berger,et al.  Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. , 2007, Journal of neurophysiology.

[30]  H. Lutcke,et al.  Two-photon imaging and analysis of neural network dynamics , 2011, 1102.5528.

[31]  Wulfram Gerstner,et al.  Inference of neuronal network spike dynamics and topology from calcium imaging data , 2013, Front. Neural Circuits.

[32]  Nathan C. Klapoetke,et al.  Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance , 2015, Neuron.

[33]  Rafael Yuste,et al.  A blanket of inhibition: functional inferences from dense inhibitory connectivity , 2014, Current Opinion in Neurobiology.

[34]  C. Petersen,et al.  Visualizing the Cortical Representation of Whisker Touch: Voltage-Sensitive Dye Imaging in Freely Moving Mice , 2006, Neuron.

[35]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[37]  M. Andermann,et al.  A somatotopic map of vibrissa motion direction within a barrel column , 2006, Nature Neuroscience.

[38]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[39]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[40]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[41]  F. Helmchen,et al.  Microcircuit dynamics of map plasticity in barrel cortex , 2014, Current Opinion in Neurobiology.

[42]  Walther Akemann,et al.  Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins , 2010, Nature Methods.

[43]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[44]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[45]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[46]  Michael Brecht,et al.  Map Plasticity in Somatosensory Cortex , 2005, Science.

[47]  H. S. Meyer,et al.  Cellular organization of cortical barrel columns is whisker-specific , 2013, Proceedings of the National Academy of Sciences.

[48]  F. Helmchen,et al.  In vivo calcium imaging of neural network function. , 2007, Physiology.

[49]  Michael Z. Lin,et al.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor , 2014, Nature Neuroscience.

[50]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[51]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[52]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[53]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Yuji Ikegaya,et al.  Genetically Encoded Green Fluorescent Ca2+ Indicators with Improved Detectability for Neuronal Ca2+ Signals , 2012, PloS one.

[55]  S. Greenfield,et al.  An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. , 2012, Journal of neurophysiology.

[56]  Wolfger von der Behrens,et al.  Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats. , 2013, Journal of neurophysiology.

[57]  Lin Tian,et al.  Activity in motor-sensory projections reveals distributed coding in somatosensation , 2012, Nature.

[58]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[59]  R. Clay Reid,et al.  Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms , 2013, Neuron.

[60]  M. Andermann,et al.  Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex , 2013, The Journal of Neuroscience.

[61]  Cullen B. Owens,et al.  Integrative Neuroscience Review Article Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements , 2022 .

[62]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[63]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[64]  R D Frostig,et al.  Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[66]  David H. Herman,et al.  Deficits in Tactile Learning in a Mouse Model of Fragile X Syndrome , 2014, PloS one.

[67]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[68]  Takashi Kawashima,et al.  Mapping brain activity at scale with cluster computing , 2014, Nature Methods.

[69]  D. McVea,et al.  Spontaneous cortical activity alternates between motifs defined by regional axonal projections , 2013, Nature Neuroscience.

[70]  M. Larkum,et al.  Frontiers in Neural Circuits Neural Circuits Methods Article , 2022 .

[71]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[72]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[73]  L. Gentet Functional diversity of supragranular GABAergic neurons in the barrel cortex , 2012, Front. Neural Circuits.

[74]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[75]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  D. Feldman Synaptic mechanisms for plasticity in neocortex. , 2009, Annual review of neuroscience.

[77]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[78]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[79]  J. White,et al.  Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution , 2008, Journal of Neuroscience Methods.

[80]  Benjamin F. Grewe,et al.  Optical probing of neuronal ensemble activity , 2009, Current Opinion in Neurobiology.

[81]  David Kleinfeld,et al.  Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. , 2003, Cerebral cortex.

[82]  F. Helmchen,et al.  New angles on neuronal dendrites in vivo. , 2007, Journal of neurophysiology.

[83]  F. Helmchen,et al.  Pathway-specific reorganization of projection neurons in somatosensory cortex during learning , 2015, Nature Neuroscience.

[84]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[85]  T. Murphy,et al.  Mesoscale Transcranial Spontaneous Activity Mapping in GCaMP3 Transgenic Mice Reveals Extensive Reciprocal Connections between Areas of Somatomotor Cortex , 2014, The Journal of Neuroscience.

[86]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[87]  Lindsey L. Glickfeld,et al.  Cortico-cortical projections in mouse visual cortex are functionally target specific , 2013, Nature Neuroscience.

[88]  Hongkui Zeng,et al.  A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo , 2012, The Journal of Neuroscience.

[89]  Walther Akemann,et al.  Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. , 2012, Journal of neurophysiology.

[90]  E. White,et al.  Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse , 1983, The Journal of comparative neurology.

[91]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[92]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[93]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[94]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[95]  Christian Griesinger,et al.  Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes , 2014, Nature Methods.

[96]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[97]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[98]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[99]  Shubhodeep Chakrabarti,et al.  Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI , 2006, The Journal of comparative neurology.

[100]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[101]  C. Petersen,et al.  Cortical control of whisker movement. , 2014, Annual review of neuroscience.