On global existence, energy decay and blow-up criteria for the Hall-MHD system

In this paper, we obtain global existence and energy decay for 3D Hall-magnetohydrodynamics (Hall-MHD) system with −Δu and −ΔB. Besides the classical energy method and Besov space techniques, the interpolating inequalities are crucial in the proof of decay estimates. Then two Osgood type blow-up criteria are established. Our results improve the corresponding theorems in [3] and [4]. In addition, we establish two Beale–Kato–Majda blow-up criterion for the generalized version of Hall-MHD with −Δu and (−Δ)βB, β>1.

[1]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[2]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[3]  Dongho Chae,et al.  On the temporal decay for the Hall-magnetohydrodynamic equations , 2013, 1302.4601.

[4]  Pierre Degond,et al.  Well-posedness for Hall-magnetohydrodynamics , 2012, 1212.3919.

[5]  Pierre Degond,et al.  Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system , 2011 .

[6]  Maria E. Schonbek,et al.  Large time behaviour of solutions to the navier-stokes equations , 1986 .

[7]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[8]  L. Ferreira,et al.  Existence and stability of global large strong solutions for the Hall-MHD system , 2014, Differential and Integral Equations.

[9]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[10]  Yong Zhou,et al.  Low Regularity Well-Posedness for the 3D Generalized Hall-MHD System , 2017 .

[11]  Gen Nakamura,et al.  Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations , 2013, Appl. Math. Lett..

[12]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[13]  Maria E. Schonbek,et al.  L2 decay for weak solutions of the Navier-Stokes equations , 1985 .

[14]  Dongho Chae,et al.  Singularity formation for the incompressible Hall-MHD equations without resistivity , 2013, 1312.5519.

[15]  Loukas Grafakos,et al.  Modern Fourier Analysis , 2008 .

[16]  Dongho Chae,et al.  On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics , 2013, 1305.4681.

[17]  Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion , 2014, 1404.0486.

[18]  Eric Dumas,et al.  On the Weak Solutions to the Maxwell–Landau–Lifshitz Equations and to the Hall–Magneto–Hydrodynamic Equations , 2013, Communications in Mathematical Physics.