Constructing the Pignistic Probability Function in a Context of Uncertainty

Summary We derive axiomatically the probability function that should be used to make decisions given any form of underlying uncertainty.

[1]  Howard Raiffa,et al.  Decision Analysis: Introductory Lectures on Choices Under Uncertainty , 1968 .

[2]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[3]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[4]  M. Degroot Optimal Statistical Decisions , 1970 .

[5]  Howard Raiffa,et al.  Decision analysis: introductory lectures on choices under uncertainty. 1968. , 1969, M.D.Computing.

[6]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[7]  Henry E. Kyburg,et al.  Bayesian and Non-Bayesian Evidential Updating , 1987, Artificial Intelligence.

[8]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[9]  Henry E. Kyburg Objective Probabilities , 1987, IJCAI.

[10]  Philippe Smets Non-standard logics for automated reasoning , 1988 .

[11]  M. Gupta,et al.  FUZZY INFORMATION AND DECISION PROCESSES , 1981 .

[12]  I. Good,et al.  Probability and the Weighting of Evidence. , 1951 .

[13]  Philippe Smets Transferable Belief Model Versus Bayesian Model , 1988, ECAI.

[14]  R. R. Yager,et al.  Uncertainty and Intelligent Systems , 1988, Lecture Notes in Computer Science.

[15]  Peter Smith,et al.  The Philosophy of Mind: Introduction , 1986 .

[16]  Cedric A. B. Smith,et al.  Consistency in Statistical Inference and Decision , 1961 .

[17]  Philippe Smets,et al.  Belief Functions versus Probability Functions , 1988, IPMU.