Metal–Organic Framework Nanoparticles

Due to their well-defined 3D architectures, permanent porosity, and diverse chemical functionalities, metal-organic framework nanoparticles (MOF NPs) are an emerging class of modular nanomaterials. Herein, recent developments in the synthesis and postsynthetic surface functionalization of MOF NPs that strengthen the fundamental understanding of how such structures form and grow are highlighted; the internal structure and external surface properties of these novel nanomaterials are highlighted as well. These fundamental advances have resulted in MOF NPs being used as components in chemical sensors, biological probes, and membrane separation materials, as well as building blocks for colloidal crystal engineering.

[1]  D. Bradshaw,et al.  Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. , 2012, Chemical Society reviews.

[2]  Huangxian Ju,et al.  Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. , 2015, Analytical chemistry.

[3]  S. Jhung,et al.  Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction , 2015 .

[4]  D. Fairen-jimenez,et al.  Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery , 2017, Chem.

[5]  J. Vermant,et al.  Directed self-assembly of nanoparticles. , 2010, ACS nano.

[6]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[7]  J. Eastoe,et al.  Recent advances in nanoparticle synthesis with reversed micelles. , 2006, Advances in colloid and interface science.

[8]  Qiang Xu,et al.  Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. , 2017, Chemical Society reviews.

[9]  K. Sada,et al.  Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. , 2015, Chemical communications.

[10]  Y. Ikada,et al.  Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. , 1995, Bioconjugate chemistry.

[11]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.

[12]  S. Granick,et al.  Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. , 2013, Journal of the American Chemical Society.

[13]  S. Wuttke,et al.  Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers. , 2017, Biomaterials.

[14]  Steve Granick,et al.  Colloidal-sized metal-organic frameworks: synthesis and applications. , 2014, Accounts of chemical research.

[15]  R. Luque,et al.  Ordered macro-microporous metal-organic framework single crystals , 2018, Science.

[16]  Zhao Xiaojing,et al.  Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors , 2014 .

[17]  S. Shinkai,et al.  "Clickable" metal-organic framework. , 2008, Journal of the American Chemical Society.

[18]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[19]  Wei‐Yin Sun,et al.  Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals , 2014 .

[20]  Yi‐nan Wu,et al.  Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. , 2017, Angewandte Chemie.

[21]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[22]  Wenbin Lin,et al.  Modular synthesis of functional nanoscale coordination polymers. , 2009, Angewandte Chemie.

[23]  J. Hupp,et al.  Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. , 2014, Angewandte Chemie.

[24]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[25]  C. Mirkin,et al.  General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles , 2017, Journal of the American Chemical Society.

[26]  E. Haque,et al.  Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses. , 2010, Physical chemistry chemical physics : PCCP.

[27]  Chem. , 2020, Catalysis from A to Z.

[28]  I. Willner,et al.  Stimuli-responsive nucleic acid-functionalized metal–organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01765k Click here for additional data file. , 2017, Chemical science.

[29]  Christian Serre,et al.  Nanostructured metal–organic frameworks and their bio-related applications , 2016 .

[30]  Wenbin Lin,et al.  Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. , 2013, RSC advances.

[31]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[32]  T. Bein,et al.  High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1 , 2009 .

[33]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[34]  Chad A Mirkin,et al.  Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. , 2014, Journal of the American Chemical Society.

[35]  Klaus Huber,et al.  Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering , 2011 .

[36]  K. A. Brown,et al.  High-throughput synthesis and characterization of nanocrystalline porphyrinic zirconium metal-organic frameworks. , 2016, Chemical communications.

[37]  Deniz A. Bölükbas,et al.  Validating Metal‐Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications , 2017, Advanced healthcare materials.

[38]  A. Vollmar,et al.  MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. , 2015, Chemical communications.

[39]  C. Mirkin,et al.  Infinite coordination polymer nano- and microparticle structures. , 2009, Chemical Society reviews.

[40]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[41]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[42]  R. Masel,et al.  Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. , 2006, Journal of the American Chemical Society.

[43]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[44]  S. Wuttke,et al.  Exosome-Coated Metal-Organic Framework Nanoparticles: An Efficient Drug Delivery Platform , 2017 .

[45]  Jihye Park,et al.  Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy. , 2016, Journal of the American Chemical Society.

[46]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[47]  Inhar Imaz,et al.  A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. , 2013, Nature chemistry.

[48]  S. Wuttke,et al.  Exploration of MOF nanoparticle sizes using various physical characterization methods – is what you measure what you get? , 2016 .

[49]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[50]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[51]  X. Lou,et al.  Oriented assembly of anisotropic nanoparticles into frame-like superstructures , 2017, Science Advances.

[52]  Bin Zheng,et al.  Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. , 2017, Nature materials.

[53]  J. Cha,et al.  DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. , 2017, Small.

[54]  S. Kitagawa,et al.  Coordinatively immobilized monolayers on porous coordination polymer crystals. , 2010, Angewandte Chemie.

[55]  James E. Evans,et al.  Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. , 2015, Journal of the American Chemical Society.

[56]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[57]  N. Zheng,et al.  Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors , 2013, Science China Chemistry.

[58]  C. Serre,et al.  An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis. , 2006, Chemical communications.

[59]  S. Kitagawa,et al.  Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. , 2014, Chemical Society reviews.

[60]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[61]  Joachim O. Rädler,et al.  Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers , 2016 .

[62]  Sachin Chavan,et al.  Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis , 2016 .

[63]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[64]  Amy J. Cairns,et al.  Highly monodisperse M(III)-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies. , 2012, Journal of the American Chemical Society.

[65]  I. Imaz,et al.  Nanoscale metal-organic materials. , 2011, Chemical Society reviews.

[66]  Francesco Stellacci,et al.  Effect of surface properties on nanoparticle-cell interactions. , 2010, Small.

[67]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[68]  Christopher Poon,et al.  Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy , 2014, Nature Communications.

[69]  Qiang Xu,et al.  Nanomaterials derived from metal–organic frameworks , 2018 .

[70]  R. Forgan,et al.  The surface chemistry of metal-organic frameworks. , 2015, Chemical communications.

[71]  Wenbin Lin,et al.  Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. , 2015, Biomaterials.

[72]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[73]  C. Serre,et al.  Microwave Synthesis of Chromium Terephthalate MIL‐101 and Its Benzene Sorption Ability , 2007 .

[74]  Susumu Kitagawa,et al.  Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. , 2009, Angewandte Chemie.

[75]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[76]  I. Willner,et al.  Stimuli‐Responsive DNA‐Functionalized Metal–Organic Frameworks (MOFs) , 2017, Advanced materials.

[77]  Youngmee Kim,et al.  Bio-functionalization of metal-organic frameworks by covalent protein conjugation. , 2011, Chemical communications.

[78]  S. Wuttke,et al.  Metal‐Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives , 2017 .

[79]  Yayuan Liu,et al.  Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. , 2013, Chemistry, an Asian journal.

[80]  F. Kapteijn,et al.  Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4ce02324b Click here for additional data file. , 2015, CrystEngComm.

[81]  Peter Behrens,et al.  Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. , 2011, Chemistry.

[82]  Huanting Wang,et al.  Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. , 2014, Chemical Society reviews.

[83]  Y. Yamauchi,et al.  Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. , 2013, Journal of the American Chemical Society.

[84]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[85]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[86]  Kang Liang,et al.  Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. , 2017, Accounts of chemical research.

[87]  S. Jhung,et al.  Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101 , 2011 .

[88]  Wenbin Lin,et al.  Coercing bisphosphonates to kill cancer cells with nanoscale coordination polymers. , 2012, Chemical communications.

[89]  S. Kitagawa,et al.  Dependence of crystal size on the catalytic performance of a porous coordination polymer. , 2015, Chemical communications.

[90]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[91]  S. Wuttke,et al.  Liposome-Coated Iron Fumarate Metal-Organic Framework Nanoparticles for Combination Therapy , 2017, Nanomaterials.

[92]  S. Kitagawa,et al.  Morphology design of porous coordination polymer crystals by coordination modulation. , 2011, Journal of the American Chemical Society.

[93]  W. Ostwald,et al.  Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper , 1900 .

[94]  Vincent Guillerm,et al.  Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals. , 2015, Angewandte Chemie.

[95]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[96]  Demin Liu,et al.  Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. , 2015, Chemical reviews.

[97]  Sonochemistry , 1990, Science.

[98]  E. Wang,et al.  Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature. , 2005, Journal of the American Chemical Society.

[99]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[100]  T. Uemura,et al.  Effect of Organic Polymer Additive on Crystallization of Porous Coordination Polymer , 2006 .

[101]  Chia‐Her Lin,et al.  Trypsin‐Immobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis , 2012 .

[102]  Ruxandra Gref,et al.  Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A , 2011 .

[103]  X. Lou,et al.  Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges , 2017, Science Advances.

[104]  Y. Yamauchi,et al.  Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. , 2012, Angewandte Chemie.

[105]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[106]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[107]  Steve Granick,et al.  Directional self-assembly of a colloidal metal-organic framework. , 2012, Angewandte Chemie.

[108]  M. Oh,et al.  Growth-controlled formation of porous coordination polymer particles. , 2008, Journal of the American Chemical Society.

[109]  Chad A Mirkin,et al.  Spherical nucleic acids. , 2012, Journal of the American Chemical Society.

[110]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[111]  M. Oh,et al.  Isotropic and Anisotropic Growth of Metal-Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature. , 2016, Journal of the American Chemical Society.

[112]  Demin Liu,et al.  Nanoscale Metal–Organic Frameworks for the Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells , 2014, Journal of the American Chemical Society.

[113]  C Jeffrey Brinker,et al.  Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. , 2009, Journal of the American Chemical Society.

[114]  Richard P Van Duyne,et al.  Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. , 2010, Analytical chemistry.

[115]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[116]  C. Doherty,et al.  Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties. , 2014, Accounts of chemical research.

[117]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[118]  Wenbin Lin,et al.  Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. , 2008, Journal of the American Chemical Society.

[119]  Leaf Huang,et al.  Pharmacokinetics and biodistribution of nanoparticles. , 2008, Molecular pharmaceutics.

[120]  Chad A Mirkin,et al.  Surface-Specific Functionalization of Nanoscale Metal-Organic Frameworks. , 2015, Angewandte Chemie.

[121]  C. Mirkin,et al.  Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal-Organic Framework. , 2017, ACS applied materials & interfaces.

[122]  Hong‐Cai Zhou,et al.  Seed-Mediated Synthesis of Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[123]  T. Uemura,et al.  Prussian blue nanoparticles protected by poly(vinylpyrrolidone). , 2003, Journal of the American Chemical Society.

[124]  E. Haque,et al.  Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. , 2010, Chemistry.

[125]  Amy J. Cairns,et al.  Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. , 2013, Journal of the American Chemical Society.

[126]  Christian J. Doonan,et al.  Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules , 2015, Nature Communications.

[127]  I. Weber,et al.  Iron-Based Metal–Organic Frameworks MIL-88B and NH2-MIL-88B: High Quality Microwave Synthesis and Solvent-Induced Lattice “Breathing” , 2013 .

[128]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[129]  C. Serre,et al.  Porous Chromium Terephthalate MIL‐101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis , 2009 .

[130]  C. Mirkin,et al.  Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers. , 2006, Angewandte Chemie.

[131]  C. López,et al.  Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. , 2017, Nature chemistry.

[132]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[133]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[134]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[135]  Jun Lin,et al.  Synthesis of highly monodispersed Ga-soc-MOF hollow cubes, colloidosomes and nanocomposites. , 2016, Chemical communications.

[136]  S. Kitagawa,et al.  Crystal morphology-directed framework orientation in porous coordination polymer films and freestanding membranes via Langmuir–Blodgettry , 2012 .

[137]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[138]  J. Cravillon,et al.  Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. , 2011, Angewandte Chemie.

[139]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[140]  P. Webley,et al.  Synthesis of well dispersed polymer grafted metal-organic framework nanoparticles. , 2015, Chemical communications.

[141]  Chad A Mirkin,et al.  Biocompatible infinite-coordination-polymer nanoparticle-nucleic-acid conjugates for antisense gene regulation. , 2015, Angewandte Chemie.

[142]  Wenbin Lin,et al.  Nanoscale coordination polymers for platinum-based anticancer drug delivery. , 2008, Journal of the American Chemical Society.

[143]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[144]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical Reviews.

[145]  T. Bein,et al.  Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal-Organic Frameworks. , 2017, Journal of the American Chemical Society.

[146]  Chad A. Mirkin,et al.  Chemically tailorable colloidal particles from infinite coordination polymers , 2005, Nature.