Jumping over the network threshold of information diffusion: testing the threshold hypothesis of social influence

PurposeSocial influence plays a crucial role in determining the size of information diffusion. Drawing on threshold models, we reformulate the nonlinear threshold hypothesis of social influence.Design/methodology/approachWe test the threshold hypothesis of social influence with a large dataset of information diffusion on social media.FindingsThere exists a bell-shaped relationship between social influence and diffusion size. However, the large network threshold, limited diffusion depth and intense bursts become the bottlenecks that constrain the diffusion size.Practical implicationsThe practice of viral marketing needs innovative strategies to increase information novelty and reduce the excessive network threshold.Originality/valueIn all, this research extends threshold models of social influence and underlines the nonlinear nature of social influence in information diffusion.

[1]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[2]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[3]  Jie Tang,et al.  Mining structural hole spanners through information diffusion in social networks , 2013, WWW.

[4]  Jun Tian,et al.  Characterizing information propagation patterns in emergencies: A case study with Yiliang Earthquake , 2018, Int. J. Inf. Manag..

[5]  Tarleton Gillespie,et al.  The politics of ‘platforms’ , 2010, New Media Soc..

[6]  Lada A. Adamic,et al.  The role of social networks in information diffusion , 2012, WWW.

[7]  Yamir Moreno,et al.  Cascading behaviour in complex socio-technical networks , 2013, J. Complex Networks.

[8]  Dongwon Lee,et al.  The Impact of Message Characteristics on Online Viral Diffusion in Online Social Media Services : The Case of Twitter , 2011 .

[9]  Joseph Waksberg,et al.  Sampling Methods for Random Digit Dialing , 1978 .

[10]  Eva Lahuerta-Otero,et al.  Retweet or like? That is the question , 2018, Online Inf. Rev..

[11]  Hai Liang Broadcast Versus Viral Spreading: The Structure of Diffusion Cascades and Selective Sharing on Social Media , 2018 .

[12]  Jonathan J. H. Zhu,et al.  A Random Digit Search (RDS) Method for Sampling of Blogs and Other User-Generated Content , 2011 .

[13]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[14]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[15]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Gerardo Iñiguez,et al.  Threshold driven contagion on weighted networks , 2017, Scientific Reports.

[17]  Eva Lahuerta-Otero,et al.  Looking for the perfect tweet. The use of data mining techniques to find influencers on twitter , 2016, Comput. Hum. Behav..

[18]  B. Greenberg Person-to-Person Communication in the Diffusion of News Events , 1964 .

[19]  Bernardo A. Huberman,et al.  Trends in Social Media: Persistence and Decay , 2011, ICWSM.

[20]  Wolfgang Kellerer,et al.  Outtweeting the Twitterers - Predicting Information Cascades in Microblogs , 2010, WOSN.

[21]  Flavio Figueiredo,et al.  The tube over time: characterizing popularity growth of youtube videos , 2011, WSDM '11.

[22]  Gregory J. L. Tourte,et al.  Twitter, information sharing and the London riots? , 2012 .

[23]  Didier Sornette,et al.  Robust dynamic classes revealed by measuring the response function of a social system , 2008, Proceedings of the National Academy of Sciences.

[24]  Alessandro Flammini,et al.  Optimal network clustering for information diffusion , 2014, Physical review letters.

[25]  Roland Soong,et al.  Threshold models of interpersonal effects in consumer demand , 1986 .

[26]  Dylan Walker,et al.  Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks , 2010, ICIS.

[27]  Yicheng Zhang,et al.  Dynamics of information diffusion and its applications on complex networks , 2016 .

[28]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[29]  Mark S. Granovetter,et al.  Threshold models of diffusion and collective behavior , 1983 .

[30]  Jintae Lee,et al.  Understanding the uncertainty of disaster tweets and its effect on retweeting: The perspectives of uncertainty reduction theory and information entropy , 2019, J. Assoc. Inf. Sci. Technol..

[31]  Bernardo A. Huberman,et al.  What Trends in Chinese Social Media , 2011, ArXiv.

[32]  Jintae Lee,et al.  Content features of tweets for effective communication during disasters: A media synchronicity theory perspective , 2019, Int. J. Inf. Manag..

[33]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[34]  Jon M. Kleinberg,et al.  Does Bad News Go Away Faster? , 2011, ICWSM.

[35]  Jonathan J. H. Zhu,et al.  Jumping onto the bandwagon of collective gatekeepers: Testing the bandwagon effect of information diffusion on social news website , 2019, Telematics Informatics.

[36]  Ciro Cattuto,et al.  Dynamical classes of collective attention in twitter , 2011, WWW.

[37]  Eszter Hargittai,et al.  The tweet smell of celebrity success: Explaining variation in Twitter adoption among a diverse group of young adults , 2011, New Media Soc..

[38]  Peng Bao,et al.  Cumulative Effect in Information Diffusion: Empirical Study on a Microblogging Network , 2013, PloS one.

[39]  Duncan J. Watts,et al.  Exploring Limits to Prediction in Complex Social Systems , 2016, WWW.

[40]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Thomas W. Valente,et al.  Opinion Leadership and Social Contagion in New Product Diffusion , 2011, Mark. Sci..

[42]  Melvin L. De Fleur,et al.  The Growth and Decline of Research on the Diffusion of the News, 1945-1985 , 1987 .

[43]  Duncan J. Watts,et al.  The Structural Virality of Online Diffusion , 2015, Manag. Sci..

[44]  Everett M. Rogers,et al.  Reflections on News Event Diffusion Research , 2000 .

[45]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[46]  Wei Gao,et al.  Mainstream media behavior analysis on Twitter: a case study on UK general election , 2013, HT '13.

[47]  Eyton,et al.  The Diffusion of Innovations in Social Networks , 2002 .

[48]  Petter Holme,et al.  Threshold model of cascades in temporal networks , 2012, ArXiv.

[49]  Jukka-Pekka Onnela,et al.  Spontaneous emergence of social influence in online systems , 2009, Proceedings of the National Academy of Sciences.

[50]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.