Topics in Random Matrix Theory

The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.

[1]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[2]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[3]  Z. Nehari Bounded analytic functions , 1950 .

[4]  A. Horn Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .

[5]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[6]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[7]  S. Golden LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .

[8]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[9]  C. Thompson Inequality with Applications in Statistical Mechanics , 1965 .

[10]  P. Federbush Partially Alternate Derivation of a Result of Nelson , 1969 .

[11]  L. Pastur On the spectrum of random matrices , 1972 .

[12]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[13]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[14]  De Barra Introduction to Measure Theory , 1974 .

[15]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[16]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[17]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[18]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[19]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[20]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[21]  H. Trotter Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .

[22]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[23]  J. Kahane Some Random Series of Functions , 1985 .

[24]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[25]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[26]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[27]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[28]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[29]  Z. Bai,et al.  Convergence rate of expected spectral distributions of large random matrices , 2008 .

[30]  B. Totaro TENSOR PRODUCTS OF SEMISTABLES ARE SEMISTABLE , 1994 .

[31]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[32]  U. Helmke,et al.  Eigenvalue inequalities and Schubert calculus , 1995 .

[33]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .

[34]  S. Hikami,et al.  Correlations of nearby levels induced by a random potential , 1996 .

[35]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[36]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[37]  David J. Grabiner Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.

[38]  M. Ledoux On Talagrand's deviation inequalities for product measures , 1997 .

[39]  A. Klyachko Stable bundles, representation theory and Hermitian operators , 1998 .

[40]  P. Biane,et al.  Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.

[41]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[42]  T. Tao,et al.  Honeycombs and sums of Hermitian matrices , 2000, math/0009048.

[43]  N. Alon,et al.  On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.

[44]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[45]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[46]  M. Ledoux The concentration of measure phenomenon , 2001 .

[47]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[48]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.

[49]  Random Regularization of Brown Spectral Measure , 2001, math/0105109.

[50]  C. Tracy,et al.  Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.

[51]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[52]  Thomas Wolff,et al.  Lectures on Harmonic Analysis , 2003 .

[53]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[54]  The Strong Circular Law. Twenty years later. Part II , 2004 .

[55]  M. Meckes Concentration of norms and eigenvalues of random matrices , 2002, math/0211192.

[56]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[57]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[58]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[59]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[60]  M. Talagrand The Generic Chaining , 2005 .

[61]  Yan V. Fyodorov,et al.  On the largest singular values of random matrices with independent Cauchy entries , 2004, math/0403425.

[62]  T. Tao,et al.  On the singularity probability of random Bernoulli matrices , 2005, math/0501313.

[63]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[64]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[65]  Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.

[66]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[67]  A. Ruzmaikina Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .

[68]  C. Gomes,et al.  Structure and Randomness , 2006 .

[69]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[70]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[71]  S. Péché,et al.  On the lower bound of the spectral norm of symmetric random matrices with independent entries , 2007, 0706.0748.

[72]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[73]  M. Rudelson,et al.  The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.

[74]  Zhidong Bai,et al.  CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .

[75]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[76]  G. Olshanski Difference operators and determinantal point processes , 2008, 0810.3751.

[77]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[78]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[79]  B. Collins,et al.  Intersections of Schubert varieties and eigenvalue inequalities in an arbitrary finite factor , 2008, 0805.4817.

[80]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[81]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[82]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[83]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[84]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[85]  Alice Guionnet,et al.  Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .

[86]  L. Pastur,et al.  CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.

[87]  Jean Bourgain,et al.  On the singularity probability of discrete random matrices , 2009, 0905.0461.

[88]  P. Forrester Log-Gases and Random Matrices , 2010 .

[89]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[90]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[91]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[92]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[93]  C. Bordenave,et al.  The circular law , 2012 .

[94]  High moments of large Wigner random matrices and asymptotic properties of the spectral norm , 2009, 0907.3743.

[95]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[96]  M. Talagrand Upper and Lower Bounds for Stochastic Processes , 2021, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.