Topics in Random Matrix Theory
暂无分享,去创建一个
[1] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[2] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[3] Z. Nehari. Bounded analytic functions , 1950 .
[4] A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .
[5] M. L. Mehta,et al. ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .
[6] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[7] S. Golden. LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .
[8] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[9] C. Thompson. Inequality with Applications in Statistical Mechanics , 1965 .
[10] P. Federbush. Partially Alternate Derivation of a Result of Nelson , 1969 .
[11] L. Pastur. On the spectrum of random matrices , 1972 .
[12] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .
[13] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[14] De Barra. Introduction to Measure Theory , 1974 .
[15] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[16] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[17] S. Sternberg,et al. Convexity properties of the moment mapping , 1982 .
[18] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[19] Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .
[20] Michael Atiyah,et al. Convexity and Commuting Hamiltonians , 1982 .
[21] H. Trotter. Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .
[22] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[23] J. Kahane. Some Random Series of Functions , 1985 .
[24] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[25] Z. Bai,et al. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .
[26] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[27] D. Voiculescu. Limit laws for Random matrices and free products , 1991 .
[28] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[29] Z. Bai,et al. Convergence rate of expected spectral distributions of large random matrices , 2008 .
[30] B. Totaro. TENSOR PRODUCTS OF SEMISTABLES ARE SEMISTABLE , 1994 .
[31] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.
[32] U. Helmke,et al. Eigenvalue inequalities and Schubert calculus , 1995 .
[33] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[34] S. Hikami,et al. Correlations of nearby levels induced by a random potential , 1996 .
[35] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[36] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[37] David J. Grabiner. Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.
[38] M. Ledoux. On Talagrand's deviation inequalities for product measures , 1997 .
[39] A. Klyachko. Stable bundles, representation theory and Hermitian operators , 1998 .
[40] P. Biane,et al. Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.
[41] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[42] T. Tao,et al. Honeycombs and sums of Hermitian matrices , 2000, math/0009048.
[43] N. Alon,et al. On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.
[44] A. Guionnet,et al. CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .
[45] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[46] M. Ledoux. The concentration of measure phenomenon , 2001 .
[47] K. Johansson. Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.
[48] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.
[49] Random Regularization of Brown Spectral Measure , 2001, math/0105109.
[50] C. Tracy,et al. Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.
[51] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[52] Thomas Wolff,et al. Lectures on Harmonic Analysis , 2003 .
[53] Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE , 2004 .
[54] The Strong Circular Law. Twenty years later. Part II , 2004 .
[55] M. Meckes. Concentration of norms and eigenvalues of random matrices , 2002, math/0211192.
[56] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.
[57] R. Lata,et al. SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .
[58] Alexander Soshnikov,et al. Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .
[59] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[60] M. Talagrand. The Generic Chaining , 2005 .
[61] Yan V. Fyodorov,et al. On the largest singular values of random matrices with independent Cauchy entries , 2004, math/0403425.
[62] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[63] M. Rudelson. Invertibility of random matrices: norm of the inverse , 2005, math/0507024.
[64] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[65] Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.
[66] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[67] A. Ruzmaikina. Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .
[68] C. Gomes,et al. Structure and Randomness , 2006 .
[69] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[70] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[71] S. Péché,et al. On the lower bound of the spectral norm of symmetric random matrices with independent entries , 2007, 0706.0748.
[72] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.
[73] M. Rudelson,et al. The least singular value of a random square matrix is O(n−1/2) , 2008, 0805.3407.
[74] Zhidong Bai,et al. CONVERGENCE RATE OF EXPECTED SPECTRAL DISTRIBUTIONS OF LARGE RANDOM MATRICES PART II: SAMPLE COVARIANCE MATRICES , 2008 .
[75] W. T. Gowers,et al. Quasirandom Groups , 2007, Combinatorics, Probability and Computing.
[76] G. Olshanski. Difference operators and determinantal point processes , 2008, 0810.3751.
[77] Charles Bordenave,et al. Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.
[78] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[79] B. Collins,et al. Intersections of Schubert varieties and eigenvalue inequalities in an arbitrary finite factor , 2008, 0805.4817.
[80] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[81] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[82] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[83] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[84] H. Yau,et al. Universality of random matrices and local relaxation flow , 2009, 0907.5605.
[85] Alice Guionnet,et al. Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .
[86] L. Pastur,et al. CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.
[87] Jean Bourgain,et al. On the singularity probability of discrete random matrices , 2009, 0905.0461.
[88] P. Forrester. Log-Gases and Random Matrices , 2010 .
[89] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[90] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[91] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[92] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[93] C. Bordenave,et al. The circular law , 2012 .
[94] High moments of large Wigner random matrices and asymptotic properties of the spectral norm , 2009, 0907.3743.
[95] M. Ledoux,et al. Logarithmic Sobolev Inequalities , 2014 .
[96] M. Talagrand. Upper and Lower Bounds for Stochastic Processes , 2021, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.