Symmetric triangular approximations of fuzzy numbers under a general condition and properties

We consider the set $$\mathcal {P}$$P of real parameters associated to a fuzzy number, in a general form which includes the most important characteristics already introduced for fuzzy numbers. We find the set $$\mathcal {P}_{\mathrm{s}}\subset \mathcal {P}$$Ps⊂P with the property that for any given fuzzy number there exists at least a symmetric triangular fuzzy number which preserves a fixed parameter $$p\in \mathcal {P}$$p∈P. We compute the symmetric triangular approximation of a fuzzy number which preserves the parameter $$p\in \mathcal {P }_{\mathrm{s}}$$p∈Ps. The uniqueness is an immediate consequence; therefore, an approximation operator is obtained. The properties of scale and translation invariance, additivity and continuity of this operator are studied. Some applications related with value and expected value, as important parameters, are given too.

[1]  Adrian I. Ban,et al.  Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval , 2008, Fuzzy Sets Syst..

[2]  M. Amparo Vila,et al.  On a canonical representation of fuzzy numbers , 1998, Fuzzy Sets Syst..

[3]  Przemyslaw Grzegorzewski,et al.  Trapezoidal approximations of fuzzy numbers - revisited , 2007, Fuzzy Sets Syst..

[4]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[5]  A. Ban,et al.  Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value , 2011, Comput. Math. Appl..

[6]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[7]  Lucian C. Coroianu,et al.  Existence, uniqueness and continuity of trapezoidal approximations of fuzzy numbers under a general condition , 2014, Fuzzy Sets Syst..

[8]  Przemyslaw Grzegorzewski,et al.  Trapezoidal approximations of fuzzy numbers , 2003, Fuzzy Sets Syst..

[9]  Lucian Coroianu Lipschitz functions and fuzzy number approximations , 2012, Fuzzy Sets Syst..

[10]  Lucian C. Coroianu,et al.  Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity , 2012, Int. J. Approx. Reason..

[11]  Stefan Chanas,et al.  On the interval approximation of a fuzzy number , 2001, Fuzzy Sets Syst..

[12]  Wenyi Zeng,et al.  Weighted triangular approximation of fuzzy numbers , 2007, Int. J. Approx. Reason..

[13]  P. Kloeden,et al.  Metric Spaces of Fuzzy Sets: Theory and Applications , 1994 .

[14]  Lucian C. Coroianu Best Lipschitz constant of the trapezoidal approximation operator preserving the expected interval , 2011, Fuzzy Sets Syst..

[15]  Przemyss Law Grzegorzewski New Algorithms for Trapezoidal Approximation of Fuzzy Numbers Preserving the Expected Interval Przemys law Grzegorzewski Systems , 2008 .

[16]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[17]  Tofigh Allahviranloo,et al.  Note on "Trapezoidal approximation of fuzzy numbers" , 2007, Fuzzy Sets Syst..

[18]  Chi-Tsuen Yeh A note on trapezoidal approximations of fuzzy numbers , 2007, Fuzzy Sets Syst..

[19]  Chi-Tsuen Yeh Trapezoidal and triangular approximations preserving the expected interval , 2008, Fuzzy Sets Syst..

[20]  Mohamed Shenify,et al.  The Expected Value of a Fuzzy Number , 2015 .

[21]  Przemyslaw Grzegorzewski,et al.  Metrics and orders in space of fuzzy numbers , 1998, Fuzzy Sets Syst..

[22]  Chi-Tsuen Yeh Weighted trapezoidal and triangular approximations of fuzzy numbers , 2009, Fuzzy Sets Syst..

[23]  Przemyslaw Grzegorzewski Trapezoidal approximations of fuzzy numbers preserving the expected interval - Algorithms and properties , 2008, Fuzzy Sets Syst..

[24]  Chi-Tsuen Yeh,et al.  On improving trapezoidal and triangular approximations of fuzzy numbers , 2008, Int. J. Approx. Reason..

[25]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[26]  Qi Yue,et al.  Triangular approximation preserving the centroid of fuzzy numbers , 2012, Int. J. Comput. Math..

[27]  Adrian I. Ban Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations , 2011, Soft Comput..

[28]  Saeid Abbasbandy,et al.  Triangular approximations of fuzzy numbers using α-weighted valuations , 2009, Soft Comput..