Synthesis, microstructure, optical and field emission studies of iron vanadium oxide nanosheets

We report a single step growth of thin graphene-like, densely packed FeV3O8 (FVO) nanosheets on silicon substrates via facile hydrothermal synthesis. These nanosheets have dimensions of a few microns with thin edges, offering very high aspect ratio. These FVO nanosheets exhibit excellent field emission behaviour with low turn on and threshold voltages of 1.3 V μm−1 and 1.7 V μm−1, respectively. The corresponding emitter delivers high emission current density of (~1.650 mA cm−2) at fairly low applied field (~4.00 V μm−1).

[1]  C. Hsieh,et al.  Field emission from various CuO nanostructures , 2003 .

[2]  Charles M. Lieber,et al.  Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. , 2002, Annual review of physical chemistry.

[3]  D. Murphy,et al.  The structures of lithium inserted metal oxides: Li2FeV3O8 , 1983 .

[4]  Juan Zhou,et al.  pH-controlled growth of ultrathin iron vanadium oxide (FeV3O8) nanoplatelets with high visible-light photo-catalytic activity , 2014 .

[5]  P. G. Chavan,et al.  Synthesis of single crystalline CdS nanocombs and their application in photo-sensitive field emission switches. , 2011, Nanoscale.

[6]  Q. Gao,et al.  Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. , 2009, Chemical communications.

[7]  Ziqiang Zhu,et al.  Field emission and room temperature ferromagnetism properties of triangle-like ZnO nanosheets , 2009 .

[8]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[9]  Hongwei Chen,et al.  Improved field emission property of graphene by laser irradiation , 2013 .

[10]  C. Cao,et al.  Photoresponse and Field-Emission Properties of Bismuth Sulfide Nanoflowers , 2008 .

[11]  T. Jacobsen,et al.  Lithium insertion in isomorphous MO2(B) structures , 1992 .

[12]  Min Zeng,et al.  Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties , 2012 .

[13]  Seung Yol Jeong,et al.  All‐Carbon Nanotube‐Based Flexible Field‐Emission Devices: From Cathode to Anode , 2011 .

[14]  Liang Li,et al.  Synthesis, field-emission and electric properties of metastable phase VO2 (A) ultra-long nanobelts. , 2011, Dalton transactions.

[15]  M. Hong,et al.  Electron field emission from polymer films treated by a pulsed ultraviolet laser , 2001 .

[16]  Xizhang Wang,et al.  Construction of AlN-Based Core–Shell Nanocone Arrays for Enhancing Field Emission , 2011 .

[17]  Gehan A. J. Amaratunga,et al.  Microwave devices: Carbon nanotubes as cold cathodes , 2005, Nature.

[18]  R. Roy,et al.  Unique quasi-vertical alignment of RGO sheets under an applied non-uniform DC electric field for enhanced field emission , 2014 .

[19]  Pablo Jarillo-Herrero,et al.  STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride , 2011, 1102.2642.

[20]  D. Murphy,et al.  The effect of lithium on the electronic configuration of LixFeV3O8 (0⩽x⩽2) , 1981 .

[21]  C. Sow,et al.  Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances , 2008 .

[22]  Prashant K. Sharma,et al.  Synthesis and characterization of self-assembled nanofiber-bundles of V2O5: their electrochemical and field emission properties. , 2012, Nanoscale.

[23]  Bin Zhao,et al.  Controlled synthesis of Cu2S microrings and their photocatalytic and field emission properties , 2013 .

[24]  Yuan-Yao Li,et al.  Formation of three-dimensional urchin-like α-Fe₂O₃ structure and its field-emission application. , 2011, ACS applied materials & interfaces.

[25]  B. Kale,et al.  Hierarchical nanostructured ZnO with nanorods engendered to nanopencils and pin-cushion cactus with its field emission study. , 2011, ACS applied materials & interfaces.

[26]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[27]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[28]  Bingqing Wei,et al.  Miniaturized gas ionization sensors using carbon nanotubes , 2003, Nature.

[29]  Norio Shinya,et al.  Nanostructured LaB6 field emitter with lowest apical work function. , 2010, Nano letters.

[30]  Haoshen Zhou,et al.  Centimeter‐Long V2O5 Nanowires: From Synthesis to Field‐Emission, Electrochemical, Electrical Transport, and Photoconductive Properties , 2010, Advanced materials.

[31]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[32]  Changqing Song,et al.  Highly efficient field emission properties of a novel layered VS2/ZnO nanocomposite and flexible VS2 nanosheet , 2014 .

[33]  Handong Sun,et al.  Synthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires , 2010, Nanotechnology.

[34]  Y. Bando,et al.  Dense and vertically-aligned centimetre-long ZnS nanowire arrays: ionic liquid assisted synthesis and their field emission properties. , 2012, Nanoscale.

[35]  Zhong Lin Wang,et al.  Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. , 2006, Small.

[36]  Jyoti Jog,et al.  Cu2O/ZnO hetero-nanobrush: hierarchical assembly, field emission and photocatalytic properties , 2012 .

[37]  H. Gong,et al.  Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes , 2009, Nanoscale research letters.

[38]  W. Ge,et al.  Vertically aligned zinc selenide nanoribbon arrays: microstructure and field emission , 2007 .

[39]  Y. Bando,et al.  Enhanced Field Emission Performance of Ga-Doped In2O3(ZnO)3 Superlattice Nanobelts , 2011 .

[40]  D. Late,et al.  Enhanced field-emission behavior of layered MoS₂ sheets. , 2013, Small.

[41]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[42]  Y. Lamy,et al.  High brightness electron beam from a multi-walled carbon nanotube , 2002, Nature.

[43]  Xiaohua Sun,et al.  Synthesis of iron oxide nanoneedles and their field emission properties , 2009 .

[44]  Imtiaz S. Mulla,et al.  The Fowler-Nordheim plot behavior and mechanism of field electron emission from ZnO tetrapod structures. , 2010, ACS nano.

[45]  R. Forbes Extraction of emission parameters for large-area field emitters, using a technically complete Fowler–Nordheim-type equation , 2011, Nanotechnology.

[46]  S. Ogale,et al.  Pulsed laser-deposited MoS₂ thin films on W and Si: field emission and photoresponse studies. , 2014, ACS applied materials & interfaces.