A Multilevel Monte Carlo Algorithm for Parabolic Advection-Diffusion Problems with Discontinuous Coefficients

The Richards' equation is a model for flow of water in unsaturated soils. The coefficients of this (nonlinear) partial differential equation describe the permeability of the medium. Insufficient or uncertain measurements are commonly modeled by random coefficients. For flows in heterogeneous\textbackslash fractured\textbackslash porous media, the coefficients are modeled as discontinuous random fields, where the interfaces along the stochastic discontinuities represent transitions in the media. More precisely, the random coefficient is given by the sum of a (continuous) Gaussian random field and a (discontinuous) jump part. In this work moments of the solution to the random partial differential equation are calculated using a path-wise numerical approximation combined with multilevel Monte Carlo sampling. The discontinuities dictate the spatial discretization, which leads to a stochastic grid. Hence, the refinement parameter and problem-dependent constants in the error analysis are random variables and we derive (optimal) a-priori convergence rates in a mean-square sense.

[1]  G. Burton Sobolev Spaces , 2013 .

[2]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[3]  Matthew W. Farthing,et al.  Numerical Solution of Richards' Equation: A Review of Advances and Challenges , 2017 .

[4]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[5]  Frances Y. Kuo,et al.  Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.

[6]  Andrea Barth,et al.  Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[7]  Andrea Barth,et al.  A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients , 2017, SIAM/ASA J. Uncertain. Quantification.

[8]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[9]  A. Stein,et al.  Approximation and simulation of infinite-dimensional Lévy processes , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[10]  Peter W. Glynn,et al.  Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..

[11]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[12]  Benjamin Peherstorfer,et al.  Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..

[13]  Jürgen Potthoff,et al.  Fast simulation of Gaussian random fields , 2011, Monte Carlo Methods Appl..

[14]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[15]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[16]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[17]  Assyr Abdulle,et al.  Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs , 2013, Multiscale Model. Simul..

[18]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[19]  Kai Zhang,et al.  Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients , 2016, Appl. Math. Comput..

[20]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[21]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[22]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[23]  Stephan Mehler Mathematical Modeling For Flow And Transport Through Porous Media , 2016 .