Modificación al algoritmo de Hooke-Jeeves para búsqueda local en variantes de evolución diferencial para resolver problemas de optimización con restricciones

Resumen. Este trabajo presenta una modificacion del algoritmo de Hooke-Jeeves implementado en variantes de Evolucion Diferencial para resolver problemas de optimizacion con restricciones. El algoritmo de Hooke-Jeeves promueve una mejor exploracion y explotacion en zonas prometedoras para encontrar mejores soluciones. El algoritmo de Hooke-Jeeves modificado es implementado en 4 variantes de Evolucion Diferencial: DE/rand/1/bin, DE/best/1/bin, Modified Differential Evolution (MDE) y Differential Evolution Combined Variants (DECV). Este enfoque es probado en un conjunto de problemas de referencia sobre optimizacion con restricciones. Los resultados son discutidos y algunas conclusiones son establecidas.

[1]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[2]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[3]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[4]  Efrén Mezura-Montes,et al.  Differential evolution in constrained numerical optimization: An empirical study , 2010, Inf. Sci..

[5]  Saúl Zapotecas Martínez,et al.  A multi-objective meta-model assisted memetic algorithm with non gradient-based local search , 2010, GECCO '10.

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[8]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[9]  Efrén Mezura-Montes,et al.  Adaptation and local search in the modified bacterial foraging algorithm for constrained optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[10]  Wenhua Zeng,et al.  A New Local Search-Based Multiobjective Optimization Algorithm , 2015, IEEE Transactions on Evolutionary Computation.

[11]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[12]  Kay Chen Tan,et al.  Adaptive Memetic Computing for Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[13]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[16]  Adriana Menchaca-Mendez,et al.  A new proposal to hybridize the Nelder-Mead method to a differential evolution algorithm for constrained optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.