Kinetics of thin film coalescence due to crystallite surface migration

The kinetics of mobility coalescence in a thin discontinuous film are investigated provided that the deposition is completed and the process proceeds in a pure form. The analysis is made on the basis of the mathematical formalism developed by Smoluchowski for description of the colloid rapid coagulation. The two limiting cases of diffusion and merging controlled coalescence are considered under the assumption that the crystallite surface diffusion coefficient and the merging rate constant are power functions of the crystallite radius r of the type rs (s = const.). It is shown that after elapsing of a sufficiently long time from the onset of the process the crystallite size distribution function Z takes a universal, self-preserving shape and an approximate analytic expression for Z is found. Formulae are also obtained for the time dependences of the dispersion of Z, the mean radius of the crystallites, their total number, their total exposed area and the total substrate area covered by them. It turns out that all these quantities are simple power functions of time t of the type tw, the value of w being dependent only on s. Finally, the theoretical results are compared with existing experimental data.

[1]  A. J. Donohoe,et al.  An experimental study of the growth kinetics of vapour-deposited thin metal films☆ , 1972 .

[2]  R. Vincent A theoretical analysis and computer simulation of the growth of epitaxial films , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[4]  E. E. Gruber Calculated Size Distributions for Gas Bubble Migration and Coalescence in Solids , 1967 .

[5]  D. W. Pashley,et al.  Nucleation and Growth of Thin Films as Observed in the Electron Microscope , 1966 .

[6]  M. Stowell,et al.  Nucleation kinetics in thin film growth: II. Analytical evaluation of nucleation and growth behaviour , 1971 .

[7]  A. J. Donohoe,et al.  Mobility and coalescence of nuclei in metal vapour deposition on alkali halide substrates , 1972 .

[8]  J. Métois,et al.  Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: I. Partie expérimentale , 1971 .

[9]  M. Stowell,et al.  Nucleation kinetics in thin film growth. I. Computer simulation of nucleation and growth behaviour , 1970 .

[10]  M. Stowell Thin film nucleation kinetics , 1972 .

[11]  J. Métois,et al.  Coalescence par chocs intergranulaires dans les couches minces (cas de l'or sur (100) KCl) , 1974 .

[12]  M. Stowell,et al.  Nucleation kinetics in thin film growth III transient nucleation and nucleation on preferred substrate sites , 1971 .

[13]  W. B. Phillips,et al.  Morphological Changes in Discontinuous Gold Films following Deposition , 1967 .

[14]  J. Métois,et al.  Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: III. Cas de l'aluminium sur kcl; Précisions sur le mécanisme de glissement , 1972 .

[15]  E. M. Baroody Calculations on the Collisional Coalescence of Gas Bubbles in Solids , 1967 .

[16]  S. Friedlander,et al.  The coagulation of hydrosols by brownian motion and laminar shear flow , 1964 .

[17]  J. Métois Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: IV. Mobilité de cristallites sur une surface: Décoration de gradins monoatomiques de surface , 1973 .

[18]  H. Schmeißer Growth and mobility effects of gold clusters on rocksalt (100) surfaces studied with the method of quantitative image analysis Part I: Cluster size distributions , 1974 .

[19]  W. B. Phillips,et al.  A Mechanism to Account for Observed Morphological Changes in Discontinuous Gold Films following Deposition , 1968 .

[20]  W. Kingery,et al.  Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation‐Condensation, and Self‐Diffusion , 1955 .

[21]  H. Reiss Rotation and Translation of Islands in the Growth of Heteroepitaxial Films , 1968 .

[22]  B. Lewis Migration and capture processes in heterogeneous nucleation and growth: II. Comparison with experiment , 1970 .

[23]  S. Friedlander THEORETICAL CONSIDERATIONS FOR THE PARTICLE SIZE SPECTRUM OF STRATOSPHERIC AEROSOL , 1961 .

[24]  Eli Ruckenstein,et al.  Growth kinetics and the size distributions of supported metal crystallites , 1973 .

[25]  G. Zinsmeister Theory of thin film condensation part C: Aggregate size distribution in island films☆ , 1969 .

[26]  J. Robins,et al.  Nucleation kinetics of gold deposited onto UHV cleaved surfaces of NaCl and KBr , 1974 .

[27]  J. Métois,et al.  Migration brownienne de cristallites sur une surface et relation avec l'épitaxie: II. Partie théorique , 1971 .

[28]  B. Chakraverty Grain size distribution in thin films—1. Conservative systems , 1967 .

[29]  H. Schmeißer Growth and mobility effects of gold clusters on rocksalt (100) surfaces studied with the method of quantitative image analysis Part II: Spatial distribution of clusters , 1974 .

[30]  D. W. Pashley,et al.  The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope , 1964 .

[31]  J. A. Venables,et al.  Rate equation approaches to thin film nucleation kinetics , 1973 .

[32]  J. Métois,et al.  Radial distribution function of nuclei formed by condensation on a clean substrate , 1974 .

[33]  M. Stowell Nucleation of Au and Ag on alkali halide substrates , 1974 .

[34]  D. Robertson Coalescence kinetics of migrating crystallites , 1973 .