Improved corrosion resistance and cytocompatibility of magnesium alloy by two-stage cooling in thermal treatment

Abstract A two-stage post-solution cooling procedure including 90 min of furnace cooling and subsequent water quenching is used to modify the morphology and distribution of the β-phase in magnesium–aluminum–zinc alloy. After this special process, the original coarse particle-like β-phase disappears and large-area fine lamellar (α + β) precipitates emerge. Dissolution of the coarse β-phase reduces the galvanic effects and produces the Al-rich α-phase matrix, whereas precipitation of the fine lamellar (α + β) micro-constituent forms a large number of almost continuous β-phase barrier. The microstructural change enhances the bio-corrosion resistance and cytocompatibility of magnesium alloy.

[1]  Z. Fan,et al.  Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment , 2006 .

[2]  Lingzhou Zhao,et al.  The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. , 2010, Biomaterials.

[3]  Ying Li,et al.  Roles of β phase in the corrosion process of AZ91D magnesium alloy , 2006 .

[4]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[5]  Yunchang Xin,et al.  Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon. , 2009, Journal of biomedical materials research. Part A.

[6]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[7]  Y. Zheng,et al.  Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. , 2010, Acta biomaterialia.

[8]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[9]  Nick Birbilis,et al.  A survey of bio-corrosion rates of magnesium alloys , 2010 .

[10]  Chun-Cheng Chen,et al.  Osteoblast-like cell initial adhesion onto a network-structured titanium oxide layer , 2004 .

[11]  M. Liu,et al.  Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 , 2008 .

[12]  Fan Zhang,et al.  In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. , 2010, Biomaterials.

[13]  P. Chu,et al.  Formation and electrochemical behavior of Al and O plasma-implanted biodegradable Mg-Y-RE alloy , 2012 .

[14]  Andrej Atrens,et al.  Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation , 2010 .

[15]  P. Chu,et al.  Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3 , 2011 .

[16]  U. Bardi,et al.  About some corrosion mechanisms of AZ91D magnesium alloy , 2005 .

[17]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[18]  Keith D K Luk,et al.  A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. , 2010, Biomaterials.

[19]  D. StJohn,et al.  Corrosion resistance of aged die cast magnesium alloy AZ91D , 2004 .

[20]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[21]  D. Wenjiang,et al.  Effects of sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy , 2000 .

[22]  Guosong Wu,et al.  Controllable degradation of biomedical magnesium by chromium and oxygen dual ion implantation , 2011 .

[23]  G. Thompson,et al.  Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings , 2008 .

[24]  Ke Yang,et al.  Formation by ion plating of Ti-coating on pure Mg for biomedical applications , 2005 .

[25]  Darren J. Martin,et al.  Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C , 2011 .

[26]  G. Tang,et al.  Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid , 2007 .

[27]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[28]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[29]  W. Zhou,et al.  Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid , 2010 .

[30]  P. Chu,et al.  Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin , 2007 .

[31]  A Scarano,et al.  Surface analysis of machined versus sandblasted and acid-etched titanium implants. , 2000, The International journal of oral & maxillofacial implants.

[32]  A. Bakkar,et al.  Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII) , 2005 .

[33]  M. Liu,et al.  Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 , 2008 .