Improvement of Target Detection Methods by Multiway Filtering

Detection and classification are key issues in processing hyperspectral images (HSIs). Spectral-identification-based algorithms are sensitive to spectral variability and noise in acquisition. In this paper, we propose two detection algorithms that are robust to noise. These algorithms consist in integrating spatial/spectral filtering into the adaptive matched filter and adaptive coherence/cosine estimator. Considering the HSI as tensor data, our approach introduces a data representation involving multilinear algebra. It combines the advantages of spatial and spectral information using an alternating least squares algorithm. To estimate the signal subspace dimension in each mode, we extended the Akaike information criterion and the minimum description length criterion. We demonstrate that integrating a multiway restoration leads to significant improvement of the detection probability. The performance of our method is exemplified using simulated and real-world Hyperspectral Digital Imagery Collection Experiment images.

[1]  John P. Kerekes,et al.  Full-spectrum spectral imaging system analytical model , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[3]  Arnold G. Dekker,et al.  A methodology for retrieval of environmental noise equivalent spectra applied to four Hyperion scenes of the same tropical coral reef , 2004 .

[4]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[5]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[6]  Ram M. Narayanan,et al.  Noise estimation in remote sensing imagery using data masking , 2003 .

[7]  Robert O. Green,et al.  On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  Victor Haertel,et al.  Spectral linear mixing model in low spatial resolution image data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Salah Bourennane,et al.  Nonorthogonal Tensor Matricization for Hyperspectral Image Filtering , 2008, IEEE Geoscience and Remote Sensing Letters.

[10]  Salah Bourennane,et al.  Multiway Filtering Based on Fourth-Order Cumulants , 2005, EURASIP J. Adv. Signal Process..

[11]  Donatella Guzzi,et al.  Assessing Noise Amplitude in Remotely Sensed Images Using Bit-Plane and Scatterplot Approaches , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Salah Bourennane,et al.  Multidimensional filtering based on a tensor approach , 2005, Signal Process..

[13]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Robert W. Basedow,et al.  HYDICE system: implementation and performance , 1995, Defense, Security, and Sensing.

[15]  Tamir Hazan,et al.  Sparse image coding using a 3D non-negative tensor factorization , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  John P. Kerekes,et al.  Analysis of HYDICE noise characteristics and their impact on subpixel object detection , 1999, Optics & Photonics.

[17]  Shen-En Qian,et al.  Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[19]  Russell M. Mersereau,et al.  On the impact of covariance contamination for adaptive detection in hyperspectral imaging , 2005, IEEE Signal Processing Letters.

[20]  Luciano Alparone,et al.  Information-theoretic assessment of sampled hyperspectral imagers , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Douglas L. Jones,et al.  A denoising approach to multichannel signal estimation , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[22]  Salah Bourennane,et al.  Survey on tensor signal algebraic filtering , 2007, Signal Process..

[23]  R.J. Birk,et al.  Airborne hyperspectral sensor systems , 1994, IEEE Aerospace and Electronic Systems Magazine.

[24]  Luciano Alparone,et al.  Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction , 1999, IEEE Trans. Geosci. Remote. Sens..

[25]  Douglas L. Jones,et al.  Wavelet-based 2-D multichannel signal estimation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[26]  A. Barducci,et al.  Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers , 2006 .

[27]  William A. Pearlman,et al.  Three-Dimensional Wavelet-Based Compression of Hyperspectral Images , 2006, Hyperspectral Data Compression.

[28]  Louis L. Scharf,et al.  Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..

[29]  Hervé Carfantan,et al.  Time-invariant orthonormal wavelet representations , 1996, IEEE Trans. Signal Process..

[30]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[31]  Salah Bourennane,et al.  Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images , 2008, IEEE Geoscience and Remote Sensing Letters.

[32]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[33]  John P. Kerekes,et al.  Hyperspectral Imaging System Modeling , 2003 .

[34]  Douglas L. Jones,et al.  Wavelet-based hyperspectral image estimation , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[35]  B. Everitt,et al.  Three-Mode Principal Component Analysis. , 1986 .

[36]  Amel Benazza-Benyahia,et al.  An extended sure approach for multicomponent image denoising , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[37]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[38]  John R. Schott,et al.  Data characterization for hyperspectral image compression , 1997, Optics & Photonics.

[39]  Louis L. Scharf,et al.  The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic , 2005, IEEE Transactions on Signal Processing.

[40]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[41]  Giovanni Poggi,et al.  Compression of multispectral images by three-dimensional SPIHT algorithm , 2000, IEEE Trans. Geosci. Remote. Sens..

[42]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[43]  J. Leeuw,et al.  Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms , 1987 .

[44]  Søren I. Olsen,et al.  Estimation of Noise in Images: An Evaluation , 1993, CVGIP Graph. Model. Image Process..