Rapid diffusion of spectrin bound to a lipid surface.

[1]  R. Cherry,et al.  Detection of Dimers of Dimers of Human Leukocyte Antigen (HLA)–DR on the Surface of Living Cells by Single-Particle Fluorescence Imaging , 1998, The Journal of cell biology.

[2]  O'Toole Pj Spectrin-lipid interactions : investigations by fluorescence spectroscopy and digital fluorescence microscopy. , 1998 .

[3]  R. Macdonald,et al.  Cytoskeletal protein binding kinetics at planar phospholipid membranes. , 1997, Biophysical journal.

[4]  A. Mackie,et al.  Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations. , 1996, Biophysical journal.

[5]  D. Speicher,et al.  Mapping the Human Erythrocyte -Spectrin Dimer Initiation Site Using Recombinant Peptides and Correlation of Its Phasing with the -Actinin Dimer Site (*) , 1996, The Journal of Biological Chemistry.

[6]  A. Sikorski,et al.  Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. , 1994, Biochimica et biophysica acta.

[7]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[8]  R. Macdonald,et al.  Temperature and ionic effects on the interaction of erythroid spectrin with phosphatidylserine membranes. , 1993, Biochemistry.

[9]  R. Macdonald,et al.  Band 4.1 enhances spectrin binding to phosphatidylserine vesicles. , 1993, Biochemical and biophysical research communications.

[10]  D. Gilligan,et al.  The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. , 1993, Annual review of cell biology.

[11]  E. Kahana,et al.  Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. , 1992, The Biochemical journal.

[12]  B. Silver,et al.  EPR study of the hydrophobic interaction of spectrin with fatty acids. , 1991, Biochimica et biophysica acta.

[13]  V. Bennett,et al.  Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. , 1990, Physiological reviews.

[14]  V. Marchesi,et al.  Full-length sequence of the cDNA for human erythroid beta-spectrin. , 1990, The Journal of biological chemistry.

[15]  R. Josephs,et al.  On the structure of erythrocyte spectrin in partially expanded membrane skeletons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. J. Clague,et al.  Transient dichroism studies of spectrin rotational diffusion in solution and bound to erythrocyte membranes. , 1990, Biochemistry.

[17]  V. Bhakuni,et al.  Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes. , 1990, Biochimica et biophysica acta.

[18]  D. Speicher,et al.  The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. , 1990, The Journal of biological chemistry.

[19]  B. Roelofsen,et al.  Involvement of ATP-dependent aminophospholipid translocation in maintaining phospholipid asymmetry in diamide-treated human erythrocytes. , 1989, Biochimica et biophysica acta.

[20]  A. Watts,et al.  Weak interaction of spectrin with phosphatidylcholine‐phosphatidylserine multilayers: A 2H and 31P NMR study , 1989, FEBS letters.

[21]  B. Vértessy,et al.  Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants. , 1989, Biophysical journal.

[22]  A. Sikorski,et al.  Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. , 1987, Biochimica et biophysica acta.

[23]  H. Gaub,et al.  Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. , 1987, Biochemistry.

[24]  R. Dale Depolarized fluorescence photobleaching recovery , 1987, European Biophysics Journal.

[25]  J. Davoust,et al.  Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Rigler,et al.  Separation of translational and rotational contributions in solution studies using fluorescence photobleaching recovery. , 1984, Biophysical journal.

[27]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[28]  P. Devaux,et al.  ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. Bonnet,et al.  Interaction of anilinonaphtyl labeled spectrin with fatty acids and phospholipids: a fluorescence study. , 1984, Biochemical and biophysical research communications.

[30]  D. Speicher,et al.  Structure of human erythrocyte spectrin. II. The sequence of the alpha-I domain. , 1983, The Journal of biological chemistry.

[31]  N. Green,et al.  Binding of hydrophobic ligands to spectrin , 1981, FEBS letters.

[32]  R. Demel,et al.  Spectrin-phospholipid interaction. A monolayer study. , 1980, Biochimica et biophysica acta.

[33]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.

[34]  E. Ungewickell,et al.  Self-association of human spectrin. A thermodynamic and kinetic study. , 1978, European journal of biochemistry.

[35]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.