Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions.

A series of amino-functionalized MIL-53 with different metals as nodes has been synthesized. By determining adsorption properties and spectroscopic characterization, we unequivocally show that the interaction between the amines of the organic linker and bridging μ(2)-OH of the inorganic scaffold modulates metal organic framework (MOF) flexibility. The strength of the interaction has been found to correlate with the electropositivity of the metal.

[1]  C. Gaudin,et al.  A quantitative structure activity relationship approach to probe the influence of the functionalization on the drug encapsulation of porous metal-organic frameworks , 2012 .

[2]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[3]  F. Kapteijn,et al.  High compressibility of a flexible metal–organic framework , 2012 .

[4]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[5]  C. Serre,et al.  Effect of the organic functionalization of flexible MOFs on the adsorption of CO2 , 2012 .

[6]  M. Pera‐Titus,et al.  Homogeneity of flexible metal–organic frameworks containing mixed linkers , 2012 .

[7]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[8]  François-Xavier Coudert,et al.  Predicting mixture coadsorption in soft porous crystals: experimental and theoretical Study of CO2/CH4 in MIL-53(Al). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[9]  M. Pera‐Titus,et al.  Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms , 2012 .

[10]  C. Riekel,et al.  How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. , 2011, Journal of the American Chemical Society.

[11]  S. Bordiga,et al.  Tailoring metal-organic frameworks for CO2 capture: the amino effect. , 2011, ChemSusChem.

[12]  Shyam Biswas,et al.  New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: syntheses, characterization, sorption, and breathing behavior. , 2011, Inorganic chemistry.

[13]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[14]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[15]  François-Xavier Coudert,et al.  Mechanism of Breathing Transitions in Metal–Organic Frameworks , 2011 .

[16]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[17]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[18]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[19]  Elsje Alessandra Quadrelli,et al.  Synthesis and Stability of Tagged UiO-66 Zr-MOFs , 2010 .

[20]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[21]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[22]  C. Serre,et al.  Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). , 2010, Journal of the American Chemical Society.

[23]  C. Serre,et al.  Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions. , 2010, Journal of the American Chemical Society.

[24]  S. Kitagawa,et al.  A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. , 2009, Journal of the American Chemical Society.

[25]  François-Xavier Coudert,et al.  Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[26]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[27]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[28]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[29]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[30]  J. Greneche,et al.  Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. , 2008, Chemical communications.

[31]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[32]  C. Serre,et al.  Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2) , 2007 .

[33]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[34]  A. Boultif History of the dichotomy method for powder pattern indexing , 2005, Powder Diffraction.

[35]  G. Spoto,et al.  Probing the acid sites in confined spaces of microporous materials by vibrational spectroscopy. , 2005, Physical chemistry chemical physics : PCCP.

[36]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[37]  V. Favre-Nicolin,et al.  FOX, `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction , 2002 .

[38]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[39]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[40]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[41]  F. Kapteijn,et al.  Decomposition of nitrous oxide over ZSM-5 catalysts , 1996 .

[42]  P. Rouxhet,et al.  Hydrogen bond strengths and acidities of hydroxyl groups on silica–alumina surfaces and in molecules in solution , 1974 .