Use of Convex Model Approximations for Real-Time Optimization via Modifier Adaptation

Real-time optimization (RTO) via modifier adaptation is a class of methods for which measurements are used to iteratively adapt the model via input-affine additive terms. The modifier terms correspond to the deviations between the measured and predicted constraints on the one hand, and the measured and predicted cost and constraint gradients on the other. If the iterative scheme converges, these modifier terms guarantee that the converged point satisfies the Karush–Kuhn–Tucker (KKT) conditions for the plant. Furthermore, if upon convergence the plant model predicts the correct curvature of the cost function, convergence to a (local) plant optimum is guaranteed. The main advantage of modifier adaptation lies in the fact that these properties do not rely on specific assumptions regarding the nature of the uncertainty. In other words, in addition to rejecting the effect of parametric uncertainty like most RTO methods, modifier adaptation can also handle process disturbances and structural plant–model mismatc...

[1]  Philip E. Gill,et al.  Practical optimization , 1981 .

[2]  B. Srinivasan,et al.  Real‐time optimization of dynamic systems using multiple units , 2007 .

[3]  Dominique Bonvin,et al.  Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty , 2005 .

[4]  Peter Roberts,et al.  On an Algorithm for Combined System Optimisation and Parameter Estimation , 1979 .

[5]  C. Fleury,et al.  A modification of convex approximation methods for structural optimization , 1997 .

[6]  Håkan Hjalmarsson,et al.  Iterative feedback tuning—an overview , 2002 .

[7]  Diego Martinez Prata,et al.  Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor , 2009 .

[8]  Friedman Yz Closed-loop optimization update - a step closer to fulfilling the dream , 2000 .

[9]  Grégory François,et al.  Measurement-based Real-Time Optimization of Chemical Processes , 2013 .

[10]  C. Fleury First and second order convex approximation strategies in structural optimization , 1989 .

[11]  Dominique Bonvin,et al.  On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes , 2013, Comput. Chem. Eng..

[12]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[13]  Dominique Bonvin,et al.  Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - I. Theoretical Foundations , 2013, 1308.2620.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  Dominique Bonvin,et al.  From Discrete Measurements to Bounded Gradient Estimates: A Look at Some Regularizing Structures , 2013 .

[16]  Dominique Bonvin,et al.  Comparison of Gradient Estimation Methods for Real-time Optimization , 2011 .

[17]  Piotr Tatjewski,et al.  Iterative Algorithms For Multilayer Optimizing Control , 2005 .

[18]  A. C. Zanin,et al.  Multivariable control and real-time optimization- : an industrial practical view , 2005 .

[19]  Sigurd Skogestad Plantwide control: the search for the self-optimizing control structure , 2000 .

[20]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[21]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[22]  Grégory François,et al.  Run-to-Run Adaptation of a Semiadiabatic Policy for the Optimization of an Industrial Batch Polymerization Process , 2004 .

[23]  José Carlos Pinto,et al.  Common vulnerabilities of RTO implementations in real chemical processes , 2013 .

[24]  Dominique Bonvin,et al.  Adaptation strategies for real-time optimization , 2009, Comput. Chem. Eng..

[25]  Thomas E. Marlin,et al.  Design cost: a systematic approach to technology selection for model-based real-time optimization systems , 1996 .

[26]  Dominique Bonvin,et al.  Comparison of Six Implicit Real-Time Optimization Schemes , 2012 .

[27]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[28]  Sebastian Engell,et al.  Iterative set-point optimization of batch chromatography , 2005, Comput. Chem. Eng..

[29]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[30]  Bala Srinivasan,et al.  Interplay between identification and optimization in run-to-run optimization schemes , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[31]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms, 3/E. , 2019 .

[32]  Dominique Bonvin,et al.  Optimizing control based on output feedback , 2009, Comput. Chem. Eng..

[33]  Peter D. Roberts,et al.  On an algorithm for combined system optimisation and parameter estimation , 1981, Autom..

[34]  Hans Joachim Ferreau,et al.  Model Predictive Control Algorithms for Applications with Millisecond Timescales (Modelgebaseerde predictieve controle algoritmes voor toepassingen met milliseconde tijdschalen) , 2011 .

[35]  Dominique Bonvin,et al.  Interplay between Identification and Optimization in Run-to-run Schemes , 2002 .

[36]  Mahmoud Reza Pishvaie,et al.  Stochastic and global real time optimization of Tennessee Eastman challenge problem , 2008, Eng. Appl. Artif. Intell..

[37]  Dominique Bonvin,et al.  Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - II. Implementation Issues , 2013 .