Nonnegative correlation coding for image classification

Feature coding is one of the most important procedures in the bag-of-features model for image classification. In this paper, we propose a novel feature coding method called nonnegative correlation coding. In order to obtain a discriminative image representation, our method employs two correlations: the correlation between features and visual words, and the correlation between the obtained codes. The first correlation reflects the locality of codes, i.e., the visual words close to the local feature are activated more easily than the ones distant. The second correlation characterizes the similarity of codes, and it means that similar local features are likely to have similar codes. Both correlations are modeled under the nonnegative constraint. Based on the Nesterov’s gradient projection algorithm, we develop an effective numerical solver to optimize the nonnegative correlation coding problem with guaranteed quadratic convergence. Comprehensive experimental results on publicly available datasets demonstrate the effectiveness of our method.创新点本文提出了一种用于图像分类的编码方法,称为“非负关联编码”。为了获得有判别力的图像表示,非负关联编码利用了两种关系:一是待编码的局部特征与视觉单词之间的关系,它反映了编码过程的局部性,即局部特征倾向于利用距离它较近的视觉单词进行表达;二是编码之间的关系,它体现了编码过程的相似性,即相似的局部特征具有相似的编码。这两种关系都在非负约束的条件下建模。另外,本文基于NGP(Nesterov梯度投影)方法提出了一种用于求解非负关联编码的有效算法。公共数据集上的实验结果证明了方法的有效性。

[1]  Patrik O. Hoyer,et al.  Modeling Receptive Fields with Non-Negative Sparse Coding , 2002, Neurocomputing.

[2]  Changsheng Xu,et al.  Low-Rank Sparse Coding for Image Classification , 2013, 2013 IEEE International Conference on Computer Vision.

[3]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[4]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[7]  Chun Chen,et al.  Graph Regularized Sparse Coding for Image Representation , 2011, IEEE Transactions on Image Processing.

[8]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Tieniu Tan,et al.  Feature Coding in Image Classification: A Comprehensive Study , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[14]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[15]  Liang-Tien Chia,et al.  Laplacian Sparse Coding, Hypergraph Laplacian Sparse Coding, and Applications , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Fei-Fei Li,et al.  What, where and who? Classifying events by scene and object recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[19]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[20]  Yueting Zhuang,et al.  Sparse representation using nonnegative curds and whey , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[22]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[23]  Liang-Tien Chia,et al.  Local features are not lonely – Laplacian sparse coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[25]  Qingming Huang,et al.  Image classification by non-negative sparse coding, correlation constrained low-rank and sparse decomposition , 2014, Comput. Vis. Image Underst..

[26]  Lihe Zhang,et al.  Low-rank decomposition and Laplacian group sparse coding for image classification , 2014, Neurocomputing.

[27]  Hervé Le Borgne,et al.  Locality-constrained and spatially regularized coding for scene categorization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Lei Wang,et al.  In defense of soft-assignment coding , 2011, 2011 International Conference on Computer Vision.

[29]  Qi Tian,et al.  Image classification by non-negative sparse coding, low-rank and sparse decomposition , 2011, CVPR 2011.

[30]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  James M. Rehg,et al.  Beyond the Euclidean distance: Creating effective visual codebooks using the Histogram Intersection Kernel , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[33]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[34]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[35]  Hongsheng Xi,et al.  Linear Distance Coding for Image Classification , 2013, IEEE Transactions on Image Processing.

[36]  U. Feige,et al.  Spectral Graph Theory , 2015 .