Thermal stress analysis at the interface of cathode and electrolyte in solid oxide fuel cells

[1]  H. Pan,et al.  Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries , 2018, Journal of Power Sources.

[2]  Fenghui Wang,et al.  The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power , 2018 .

[3]  M. Andersson,et al.  Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells , 2018 .

[4]  M. Andersson,et al.  Thermal stress analysis of sulfur deactivated solid oxide fuel cells , 2018 .

[5]  Minfang Han,et al.  A short review of cathode poisoning and corrosion in solid oxide fuel cell , 2017 .

[6]  M. Laguna-Bercero,et al.  Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance , 2017 .

[7]  Min Xu,et al.  Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity , 2017 .

[8]  Lucun Guo,et al.  Modification of electrode/electrolyte interface by laser micro-processing for solid oxide fuel cell , 2017 .

[9]  S. Fourcade,et al.  Influence of the electrode/electrolyte interface structure on the performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ as Solid Oxide Fuel Cell cathode , 2017 .

[10]  Min Xu,et al.  Modeling of an anode supported Solid Oxide Fuel Cell focusing on Thermal Stresses , 2016 .

[11]  Min Xu,et al.  Solid oxide fuel cell interconnect design optimization considering the thermal stresses , 2016, Science bulletin.

[12]  Mogens Bjerg Mogensen,et al.  Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers , 2016, Nature Energy.

[13]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[14]  Tingshuai Li,et al.  Mechanism of Phosphorus and Chlorine Passivating a Nickel Catalyst: A Density Functional Theory Study , 2015 .

[15]  G. Tsekouras,et al.  Conductivity and oxygen reduction activity changes in lanthanum strontium manganite upon low-level chromium substitution , 2014 .

[16]  Tingshuai Li,et al.  Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell , 2014 .

[17]  S. Jiang,et al.  Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review , 2014 .

[18]  Bengt Sundén,et al.  Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation , 2013 .

[19]  K. Yamaji,et al.  Correlation between degradation of cathode performance and chromium concentration in (La,Sr)MnO3 cathode , 2012 .

[20]  Jürgen Malzbender,et al.  Component interactions after long-term operation of an SOFC stack with LSM cathode , 2012 .

[21]  S. Jiang,et al.  Failure mechanism of (La,Sr)MnO 3 oxygen electrodes of solid oxide electrolysis cells , 2011 .

[22]  M. Soroush,et al.  Mathematical modeling of solid oxide fuel cells: A review , 2011 .

[23]  Tingshuai Li,et al.  sulfur-poisoned ni-based solid oxide fuel cell anode characterization by varying water content , 2011 .

[24]  Joongmyeon Bae,et al.  Fast performance degradation of SOFC caused by cathode delamination in long-term testing , 2010 .

[25]  Bengt Sundén,et al.  Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells , 2010 .

[26]  J. Almer,et al.  Characterization of Cr Poisoning in a Solid Oxide Fuel Cell Cathode Using a High Energy X-ray Microbeam , 2010 .

[27]  Xingbo Liu,et al.  Recent Development of SOFC Metallic Interconnect , 2010 .

[28]  N. Muthukumarasamy,et al.  Influence of the Cd/S Molar Ratio on the Optical and Structural Properties of Nanocrystalline CdS Thin Films , 2010 .

[29]  San Ping Jiang,et al.  Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+δ cathodes of solid oxide fuel cells , 2010 .

[30]  B. Ingram,et al.  The Effect of Chromium Oxyhydroxide on Solid Oxide Fuel Cells , 2010 .

[31]  J. Bentzen,et al.  Chromium Poisoning of LSM/YSZ and LSCF/CGO Composite Cathodes , 2009 .

[32]  Peter Vang Hendriksen,et al.  Microstructural studies on degradation of interface between LSM–YSZ cathode and YSZ electrolyte in SOFCs , 2009 .

[33]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[34]  B. Sundén,et al.  CFD Approach to Analyze Transport Phenomena Coupled Chemical Reactions Relevant for Methane Reformers , 2009 .

[35]  E. Wachsman,et al.  Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs , 2009 .

[36]  Bengt Sundén,et al.  Analysis of parameter effects on chemical reaction coupled transport phenomena in SOFC anodes , 2009 .

[37]  S. Jiang,et al.  Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells , 2008 .

[38]  Amornchai Arpornwichanop,et al.  Electrochemical study of a planar solid oxide fuel cell: Role of support structures , 2008 .

[39]  Hajime Arai,et al.  Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition , 2008 .

[40]  Ji-won Son,et al.  Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs , 2006 .

[41]  Doris Sebold,et al.  Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .

[42]  Y. L. Liu,et al.  Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy , 2005 .

[43]  Xiaohua Deng,et al.  Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells , 2005 .

[44]  Y. Matsuzaki,et al.  Dependence of SOFC Cathode Degradation by Chromium-Containing Alloy on Compositions of Electrodes and Electrolytes , 2001 .

[45]  S. Jiang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics , 2000 .

[46]  J. Zhang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells II. Effect on O 2 Reduction Reaction , 2000 .

[47]  M. Stack,et al.  Reactive element effects on the ionic transport processes in Cr2O3 scales , 1998 .

[48]  D. Peck,et al.  Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes , 1996 .

[49]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[50]  M. Andersson,et al.  Thermal stress analysis of solid oxide fuel cells with chromium poisoning cathodes , 2018 .

[51]  M. Andersson,et al.  Effect of the electrochemical active site on thermal stress in solid oxide fuel cells , 2018 .

[52]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .