A Silicon Surface Code Architecture Resilient Against Leakage Errors

Spin qubits in silicon quantum dots are one of the most promising building blocks for large scale quantum computers thanks to their high qubit density and compatibility with the existing semiconductor technologies. High fidelity single-qubit gates exceeding the threshold of error correction codes like the surface code have been demonstrated, while two-qubit gates have reached 98% fidelity and are improving rapidly. However, there are other types of error --- such as charge leakage and propagation --- that may occur in quantum dot arrays and which cannot be corrected by quantum error correction codes, making them potentially damaging even when their probability is small. We propose a surface code architecture for silicon quantum dot spin qubits that is robust against leakage errors by incorporating multi-electron mediator dots. Charge leakage in the qubit dots is transferred to the mediator dots via charge relaxation processes and then removed using charge reservoirs attached to the mediators. A stabiliser-check cycle, optimised for our hardware, then removes the correlations between the residual physical errors. Through simulations we obtain the surface code threshold for the charge leakage errors and show that in our architecture the damage due to charge leakage errors is reduced to a similar level to that of the usual depolarising gate noise. Spin leakage errors in our architecture are constrained to only ancilla qubits and can be removed during quantum error correction via reinitialisations of ancillae, which ensure the robustness of our architecture against spin leakage as well. Our use of an elongated mediator dots creates spaces throughout the quantum dot array for charge reservoirs, measuring devices and control gates, providing the scalability in the design.

[1]  Stephen M. Wandzura,et al.  Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem , 2011, Quantum Inf. Comput..

[2]  Werner Wegscheider,et al.  Coherent spin-exchange via a quantum mediator. , 2016, Nature nanotechnology.

[3]  Maud Vinet,et al.  Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot , 2017, 1708.02903.

[4]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[5]  B. Hensen,et al.  Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout , 2017, Nature Communications.

[6]  C. Yang,et al.  Dynamically controlled charge sensing of a few-electron silicon quantum dot , 2011, 1107.1557.

[7]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[8]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[9]  Zhenyu Cai,et al.  Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels , 2018, Scientific Reports.

[10]  A. Morello,et al.  Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy , 2018, Physical Review Applied.

[11]  Andrew S. Dzurak,et al.  Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.

[12]  A. Dzurak,et al.  Gate-defined quantum dots in intrinsic silicon. , 2007, Nano letters.

[13]  Tammy Pluym,et al.  A silicon metal-oxide-semiconductor electron spin-orbit qubit , 2018, Nature Communications.

[14]  J. Baugh,et al.  Network architecture for a topological quantum computer in silicon , 2018, Quantum Science and Technology.

[15]  K. Itoh,et al.  Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot , 2019, Nature Communications.

[16]  R. Feynman Simulating physics with computers , 1999 .

[17]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[18]  Kenneth R. Brown,et al.  Comparison of a quantum error correction threshold for exact and approximate errors , 2014, 1501.00068.

[19]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[20]  Tammy Pluym,et al.  Coherent coupling between a quantum dot and a donor in silicon , 2015, Nature Communications.

[21]  J. Petta,et al.  Charge relaxation in a single-electron Si/SiGe double quantum dot. , 2013, Physical review letters.

[22]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[23]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[24]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[25]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[26]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[28]  B. Hensen,et al.  Silicon qubit fidelities approaching incoherent noise limits via pulse engineering , 2018, Nature Electronics.

[29]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[30]  N. Kalhor,et al.  Rapid gate-based spin read-out in silicon using an on-chip resonator , 2019, Nature Nanotechnology.

[31]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[32]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[33]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[34]  L. M. K. Vandersypen,et al.  Rapid high-fidelity gate-based spin read-out in silicon , 2019, 1901.00687.

[35]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[36]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[37]  David P. DiVincenzo,et al.  Fault-tolerant quantum computation for singlet-triplet qubits with leakage errors , 2014, 1412.7010.

[38]  Jacob M. Taylor,et al.  Tunable Spin-Qubit Coupling Mediated by a Multielectron Quantum Dot. , 2013, Physical review letters.

[39]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[40]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[41]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[42]  Isotope engineering of silicon and diamond for quantum computing and sensing applications , 2014, 1410.3922.

[43]  T. Kobayashi,et al.  Single-Shot Single-Gate rf Spin Readout in Silicon , 2018, Physical Review X.

[44]  L. M. K. Vandersypen,et al.  Efficient controlled-phase gate for single-spin qubits in quantum dots , 2010, 1010.0164.

[45]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[46]  W. G. van der Wiel,et al.  Coherent single electron spin control in a slanting Zeeman field. , 2005, Physical review letters.

[47]  Joel R. Wendt,et al.  High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism , 2017, 1703.02651.

[48]  S. Barrett,et al.  Double-occupation errors induced by orbital dephasing in exchange-interaction quantum gates , 2002 .

[49]  Andrew S. Dzurak,et al.  Logical Qubit in a Linear Array of Semiconductor Quantum Dots , 2016, Physical Review X.

[50]  Joe O'Gorman,et al.  A silicon-based surface code quantum computer , 2014, npj Quantum Information.

[51]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[52]  M. Veldhorst,et al.  Impact of g -factors and valleys on spin qubits in a silicon double quantum dot , 2016, 1608.07748.

[53]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[54]  Peter D. Nissen,et al.  Spin of a Multielectron Quantum Dot and Its Interaction with a Neighboring Electron , 2017, 1710.10012.

[55]  J. Wendt,et al.  Probing low noise at the MOS interface with a spin-orbit qubit , 2017, 1707.04357.

[56]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[57]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[58]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[59]  Peter D. Nissen,et al.  Fast spin exchange across a multielectron mediator , 2019, Nature Communications.

[60]  D. DiVincenzo,et al.  Two-qubit couplings of singlet-triplet qubits mediated by one quantum state , 2014, 1403.2910.

[61]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[62]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[63]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[64]  B. Hensen,et al.  Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction , 2018, Physical Review X.

[65]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[66]  F. K. Wilhelm,et al.  Single-qubit gates in frequency-crowded transmon systems , 2013, 1306.2279.

[67]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[68]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[69]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[70]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[71]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[72]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[73]  Andrew W. Cross,et al.  Leakage suppression in the toric code , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[74]  A. Gossard,et al.  Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot , 2004, cond-mat/0410679.

[75]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[76]  G. Pica,et al.  Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings , 2015, 1506.04913.

[77]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[78]  Mark A. Eriksson,et al.  Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet , 2016, Proceedings of the National Academy of Sciences.

[79]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[80]  Michael R. Geller,et al.  Efficient error models for fault-tolerant architectures and the Pauli twirling approximation , 2013, 1305.2021.

[81]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[82]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[83]  Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon , 2014, 1410.2245.

[84]  Gerhard Klimeck,et al.  Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability , 2017, Physical Review B.

[85]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[86]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[87]  S. Tarucha,et al.  A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.

[88]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[89]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[90]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[91]  Kenneth R. Brown,et al.  Approximation of realistic errors by Clifford channels and Pauli measurements , 2012, 1207.0046.