On general families of parametrized Thue equations

We consider families of parametrized Thue equations Fa(X,Y ) = ±1, a ∈ N where Fa ∈ Z[a][X,Y ] is a binary irreducible form with coefficients which are polynomials in some parameter a. We give a survey on known results and describe the general shape how such families are usually solved using linear form estimates, and show how this can be done algorithmically. 1991 Mathematics Subject Classification: 11D57, 11Y50

[1]  Eduardo Friedman,et al.  Analytic formulas for the regulator of a number field , 1989 .

[2]  A. Baker,et al.  Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  G. Lettl,et al.  Complete solution of a family of quartic Thue equations , 1995 .

[4]  Guillaume Hanrot,et al.  Solving Thue equations without the full unit group , 2000, Math. Comput..

[5]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[6]  Maurice Mignotte,et al.  Complete solutions of quartic Thue and index form equations ⁄y , 1996 .

[7]  R. Tichy,et al.  Complete solution of parametrized Thue equations , 1998 .

[8]  Michael A. Bennett,et al.  Rational Approximation to Algebraic Numbers of Small Height : the Diophantine Equation Jax N ? by N J = 1 , 2007 .

[9]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[10]  Emery Thomas,et al.  Complete solutions to a family of cubic Diophantine equations , 1990 .

[11]  S. Lang Number Theory III , 1991 .

[12]  Robert F. Tichy,et al.  On Two-Parametric Quartic Families of Diophantine Problems , 1998, J. Symb. Comput..

[13]  S. Lang,et al.  Elliptic Curves: Diophantine Analysis , 1978 .

[14]  W. Schmidt,et al.  On Thue's equation , 1987 .

[15]  De Weger,et al.  de Weger: On the practical solution of the Thue equation , 1989 .

[16]  Robert F. Tichy,et al.  Thue Equations Associated with Ankeny–Brauer–Chowla Number Fields , 1999 .

[17]  István Gaál,et al.  A parametric family of quintic Thue equations , 2000, Math. Comput..

[18]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[19]  M. Pohst Regulatorabschätzungen für total reelle algebraische Zahlkörper , 1977 .

[20]  Attila Pethő,et al.  Complete solutions to families of quartic Thue equations , 1991 .

[21]  Nikos Tzanakis,et al.  On a family of cubics , 1991 .

[22]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[23]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[24]  Axel Thue Über Annäherungswerte algebraischer Zahlen. , 1909 .

[25]  Attila Pethö,et al.  Simple families of Thue inequalities , 1999 .

[26]  P. Michor,et al.  Choosing roots of polynomials smoothly , 1998, math/9801026.

[27]  Guillaume Hanrot,et al.  Solving Thue Equations of High Degree , 1996 .

[28]  C. Heuberger On a conjecture of E. Thomas concerning parametrized Thue equations , 2001 .

[29]  R. Remak Über die Abschätzung des absoluten Betrages des Regulators eines algebraischen Zahlkörpers nach unten. , 1932 .

[30]  Isao Wakabayashi On a Family of Quartic Thue Inequalities, II , 1997 .

[31]  Y. Bugeaud,et al.  Bounds for the solutions of Thue-Mahler equations and norm form equations , 1996 .