Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

[1]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[2]  Andrei Faraon,et al.  Efficient high NA flat micro-lenses realized using high contrast transmitarrays , 2015, Photonics West - Optoelectronic Materials and Devices.

[3]  O. Mitrofanov,et al.  Hollow metallic waveguides integrated with terahertz quantum cascade lasers. , 2014, Optics express.

[4]  Jérôme Faist,et al.  Horn antennas for terahertz quantum cascade lasers , 2007 .

[5]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[6]  D. Fattal,et al.  Controlling the phase front of optical fiber beams using high contrast metastructures , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[7]  W. Marsden I and J , 2012 .

[8]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[9]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .

[10]  Philippe Lalanne,et al.  Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff , 1999 .

[11]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[12]  Yu-Chi Chang,et al.  Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies. , 2014, The Analyst.

[13]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[14]  M. Fraser,et al.  Application of quantum cascade lasers to trace gas analysis , 2008 .

[15]  Siamak Forouhar,et al.  Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W , 2014 .

[16]  Jerry Waldman,et al.  Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide. , 2007, Applied optics.

[17]  Federico Capasso,et al.  Bowtie plasmonic quantum cascade laser antenna. , 2007, Optics express.

[18]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[19]  Guillaume Huyet,et al.  Experimental high numerical aperture focusing with high contrast gratings. , 2013, Optics letters.

[20]  Federico Capasso,et al.  Quantum cascade lasers with integrated plasmonic antenna-array collimators. , 2008, Optics express.

[21]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[22]  Frank K. Tittel,et al.  Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy , 2006 .

[23]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[24]  Jordi Fonollosa,et al.  Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications , 2008 .

[25]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[26]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[27]  H. Craighead,et al.  Diffractive phase elements based on two-dimensional artificial dielectrics. , 1995, Optics letters.

[28]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[29]  A. Kosterev,et al.  Chemical sensors based on quantum cascade lasers , 2002 .

[30]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..