Effective clustering and boundary detection algorithm based on Delaunay triangulation

In this paper, a new spatial clustering algorithm TRICLUST based on Delaunay triangulation is proposed. This algorithm treats clustering task by analyzing statistical features of data. For each data point, its values of statistical features are extracted from its neighborhood which effectively models the data proximity. By applying specifically built criteria function, TRICLUST is able to effectively handle data set with clusters of complex shapes and non-uniform densities, and with large amount of noises. One additional advantage of TRICLUST is the boundary detection function which is valuable for many real world applications such as geo-spatial data processing, point-based computer graphics, etc.

[1]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[2]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[3]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[4]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[5]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[6]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[7]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[8]  Markus H. Gross,et al.  Point-based computer graphics , 2004, SIGGRAPH '04.

[9]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[10]  Adrian E. Raftery,et al.  MCLUST: Software for Model-Based Clustering, Density Estimation and Discriminant Analysis , 2002 .

[11]  Bettina Speckmann,et al.  Bounds on the k-Neighborhood for Locally Uniformly Sampled Surfaces , 2004, PBG.

[12]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[13]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[14]  George Nagy,et al.  State of the art in pattern recognition , 1968 .

[15]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[16]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[17]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[18]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[19]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[20]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[21]  Zhi-Qiang Liu,et al.  Self-splitting competitive learning: a new on-line clustering paradigm , 2002, IEEE Trans. Neural Networks.

[22]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[23]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[24]  A. Adamson,et al.  Approximating bounded, nonorientable surfaces from points , 2004, Proceedings Shape Modeling Applications, 2004..

[25]  Frederik P. Agterberg,et al.  Interactive spatial data analysis , 1996 .

[26]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[27]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[28]  Ki-Joune Li,et al.  A spatial data mining method by Delaunay triangulation , 1997, GIS '97.

[29]  Fred A. Hamprecht,et al.  Efficient Density Clustering Using Basin Spanning Trees , 2003 .