A logic for metric and topology

We propose a logic for reasoning about metric spaces with the induced topologies. It com bines the 'qualitative' interior and closure operators with 'quantitative' operators 'somewhere in the sphere of radius r.' including or excluding the boundary. We supply the logic with both the intended metric space semantics and a natural relational semantics, and show that the latter (i) provides finite partial representations of (in general) infinite metric models and (ii) reduces the standard 'e-definitions' of closure and interior to simple constraints on relations. These features of the relational semantics suggest a finite axiomatisation of the logic and provide means to prove its EXPTIME-completeness (even if the rational numerical parameters are coded in binary). An extension with metric variables satisfying linear rational (in)equalities is proved to be decidable as well. Our logic can be regarded as a 'well-behaved' common denominator of logical systems constructed in temporal, spatial, and similarity-based quantitative and qualitative representation and reasoning. Interpreted on the real line (with its Euclidean metric), it is a natural fragment of decidable temporal logics for specification and verification of real-time systems. On the real plane, it is closely related to quantitative and qualitative formalisms for spatial representation and reasoning, but this time the logic becomes undecidable. ?

[1]  Frank Wolter,et al.  Logics of metric spaces , 2003, TOCL.

[2]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[3]  Anil Nerode,et al.  Modal Logics and Topological Semantics for Hybrid Systems , 1997 .

[4]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, JACM.

[5]  Peter Gärdenfors,et al.  Reasoning about Categories in Conceptual Spaces , 2001, IJCAI.

[6]  Rolf Backofen,et al.  COMPUTATIONAL MOLECULAR BIOLOGY: AN INTRODUCTION , 2000 .

[7]  Philip Kremer,et al.  Axiomatizing the next-interior fragment of dynamic topological logic , 1997 .

[8]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[9]  A. Tarski Der Aussagenkalkül und die Topologie , 1938 .

[10]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[12]  Dimitris Papadias,et al.  Topological Inference , 1995, IJCAI.

[13]  Pere Garcia-Calvés,et al.  A modal account of similarity-based reasoning , 1997, Int. J. Approx. Reason..

[14]  R. Goldblatt Mathematics of modality , 1993 .

[15]  Stephen B Dunnett A computational perspective on the striatum , 2001, Trends in Neurosciences.

[16]  Guram Bezhanishvili,et al.  A NEW PROOF OF COMPLETENESS OF S4 WITH RESPECT TO THE REAL LINE , 2002 .

[17]  A. Chagrov,et al.  Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .

[18]  Carsten Lutz,et al.  Øøøðððù Ððóööøøñ Óö Ööö×óòòòò Óùø Óò Blockin Blockinôø× Òò ××ññððööøý , 2003 .

[19]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[20]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[21]  Jochen Renz,et al.  On the Complexity of Qualitative Spatial Reasoning : A Maximal Tractable Fragment of RCC-8 , 1997 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[24]  Johan van Benthem,et al.  Reasoning About Space: The Modal Way , 2003, J. Log. Comput..

[25]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[26]  Frank Wolter,et al.  Reasoning about distances , 2003, IJCAI.

[27]  A. Wilkie THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .

[28]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[29]  Henri Prade,et al.  A logical approach to interpolation based on similarity relations , 1997, Int. J. Approx. Reason..

[30]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[31]  A. Lesk COMPUTATIONAL MOLECULAR BIOLOGY , 1988, Proceeding of Data For Discovery.

[32]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[33]  Saunders Mac Lane Review: Alfred Tarski, Der Aussagenkalkul und die Topologie , 1939 .

[34]  Valentin B. Shehtman,et al.  "Everywhere" and "Here" , 1999, J. Appl. Non Class. Logics.

[35]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[36]  Yoram Hirshfeld,et al.  Quantitative Temporal Logic , 1999, CSL.

[37]  Maarten Marx,et al.  The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.