A logic for metric and topology
暂无分享,去创建一个
[1] Frank Wolter,et al. Logics of metric spaces , 2003, TOCL.
[2] M. Egenhofer,et al. Point-Set Topological Spatial Relations , 2001 .
[3] Anil Nerode,et al. Modal Logics and Topological Semantics for Hybrid Systems , 1997 .
[4] Thomas A. Henzinger,et al. The benefits of relaxing punctuality , 1991, JACM.
[5] Peter Gärdenfors,et al. Reasoning about Categories in Conceptual Spaces , 2001, IJCAI.
[6] Rolf Backofen,et al. COMPUTATIONAL MOLECULAR BIOLOGY: AN INTRODUCTION , 2000 .
[7] Philip Kremer,et al. Axiomatizing the next-interior fragment of dynamic topological logic , 1997 .
[8] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[9] A. Tarski. Der Aussagenkalkül und die Topologie , 1938 .
[10] Daniel P. Huttenlocher,et al. Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[11] Jerzy Tiuryn,et al. Dynamic logic , 2001, SIGA.
[12] Dimitris Papadias,et al. Topological Inference , 1995, IJCAI.
[13] Pere Garcia-Calvés,et al. A modal account of similarity-based reasoning , 1997, Int. J. Approx. Reason..
[14] R. Goldblatt. Mathematics of modality , 1993 .
[15] Stephen B Dunnett. A computational perspective on the striatum , 2001, Trends in Neurosciences.
[16] Guram Bezhanishvili,et al. A NEW PROOF OF COMPLETENESS OF S4 WITH RESPECT TO THE REAL LINE , 2002 .
[17] A. Chagrov,et al. Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .
[18] Carsten Lutz,et al. Øøøðððù Ððóööøøñ Óö Ööö×óòòòò Óùø Óò Blockin Blockinôø× Òò ××ññððööøý , 2003 .
[19] A. Tarski,et al. The Algebra of Topology , 1944 .
[20] Yuri Gurevich,et al. The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.
[21] Jochen Renz,et al. On the Complexity of Qualitative Spatial Reasoning : A Maximal Tractable Fragment of RCC-8 , 1997 .
[22] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[23] Richard E. Ladner,et al. The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..
[24] Johan van Benthem,et al. Reasoning About Space: The Modal Way , 2003, J. Log. Comput..
[25] Bernhard Nebel,et al. On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..
[26] Frank Wolter,et al. Reasoning about distances , 2003, IJCAI.
[27] A. Wilkie. THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .
[28] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[29] Henri Prade,et al. A logical approach to interpolation based on similarity relations , 1997, Int. J. Approx. Reason..
[30] Thomas A. Henzinger,et al. A really temporal logic , 1994, JACM.
[31] A. Lesk. COMPUTATIONAL MOLECULAR BIOLOGY , 1988, Proceeding of Data For Discovery.
[32] Brandon Bennett,et al. Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.
[33] Saunders Mac Lane. Review: Alfred Tarski, Der Aussagenkalkul und die Topologie , 1939 .
[34] Valentin B. Shehtman,et al. "Everywhere" and "Here" , 1999, J. Appl. Non Class. Logics.
[35] Anthony G. Cohn,et al. Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.
[36] Yoram Hirshfeld,et al. Quantitative Temporal Logic , 1999, CSL.
[37] Maarten Marx,et al. The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.