Sparse $$\ell _{1}$$ℓ1 regularisation of matrix valued models for acoustic source characterisation

We present a strategy for the recovery of a sparse solution of a common problem in acoustic engineering, which is the reconstruction of sound source levels and locations applying microphone array measurements. The considered task bears similarities to the basis pursuit formalism but also relies on additional model assumptions that are challenging from a mathematical point of view. Our approach reformulates the original task as a convex optimisation model. The sought solution shall be a matrix with a certain desired structure. We enforce this structure through additional constraints. By combining popular splitting algorithms and matrix differential theory in a novel framework we obtain a numerically efficient strategy. Besides a thorough theoretical consideration we also provide an experimental setup that certifies the usability of our strategy. Finally, we also address practical issues, such as the handling of inaccuracies in the measurement and corruption of the given data. We provide a post processing step that is capable of yielding an almost perfect solution in such circumstances.

[1]  Martin Burger,et al.  Primal and Dual Bregman Methods with Application to Optical Nanoscopy , 2011, International Journal of Computer Vision.

[2]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[3]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[4]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[5]  Christian Kanzow,et al.  Theorie und Numerik restringierter Optimierungsaufgaben , 2002 .

[6]  Gert Herold,et al.  PRELIMINARY BENCHMARKING OF MICROPHONE ARRAY METHODS , 2014 .

[7]  T. Minka Old and New Matrix Algebra Useful for Statistics , 2000 .

[8]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[9]  Wotao Yin,et al.  Error Forgetting of Bregman Iteration , 2013, J. Sci. Comput..

[10]  P. Stoica,et al.  Sparsity constrained deconvolution approaches for acoustic source mapping. , 2008, The Journal of the Acoustical Society of America.

[11]  Georges Elias,et al.  Level Estimation of Extended Acoustic Sources Using a Parametric Method , 2004 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[14]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[15]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[16]  Charles R. Johnson,et al.  Topics in matrix analysis: The Hadamard product , 1991 .

[17]  Guy Gilboa,et al.  Nonlinear Inverse Scale Space Methods for Image Restoration , 2005, VLSM.

[18]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[19]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[20]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[21]  Martin Crowder,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1989 .

[22]  Tom Goldstein,et al.  Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction , 2015, AISTATS.

[23]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[24]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[25]  Aiaa Paper,et al.  CLEAN based on spatial source coherence , 2007 .

[26]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[27]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[28]  Ennes Sarradj,et al.  A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements , 2010 .

[29]  Euhanna Ghadimi,et al.  Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems , 2013, IEEE Transactions on Automatic Control.

[30]  Stanley Osher,et al.  Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising , 2007, IEEE Transactions on Image Processing.

[31]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[32]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[33]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[34]  Konstantina Christakopoulou,et al.  Accelerated Alternating Direction Method of Multipliers , 2015, KDD.

[35]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[36]  Xu Yangyang A BLOCK COORDINATE DESCENT METHOD FOR MULTI-CONVEX OPTIMIZATION WITH APPLICATIONS TO NONNEGATIVE TENSOR FACTORIZATION AND COMPLETION , 2012 .

[37]  Gert Herold,et al.  An Approach to Estimate the Reliability of Microphone Array Methods , 2015 .

[38]  D.S.G. Pollock,et al.  Tensor products and matrix differential calculus , 1985 .

[39]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[40]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[41]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[42]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[43]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[44]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[45]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[48]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[49]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[50]  Lin He,et al.  Error estimation for Bregman iterations and inverse scale space methods in image restoration , 2007, Computing.

[51]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[52]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.