Assessing the Location, Relative Expression and Subclass of Dopamine Receptors in the Cerebellum of Hemi-Parkinsonian Rats

[1]  M. Rubinstein,et al.  Cerebellar dopamine D2 receptors regulate social behaviors , 2022, Nature Neuroscience.

[2]  Y. Kozorovitskiy,et al.  Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells , 2022, bioRxiv.

[3]  M. Gulisano,et al.  The Cerebellar Dopaminergic System , 2021, Frontiers in Systems Neuroscience.

[4]  Yifeng Cheng,et al.  Whole-Brain Mapping of Direct Inputs to Dopamine D1 and D2 Receptor-Expressing Medium Spiny Neurons in the Posterior Dorsomedial Striatum , 2020, eNeuro.

[5]  Hirofumi Fujita,et al.  Purkinje Cell-Specific Knockout of Tyrosine Hydroxylase Impairs Cognitive Behaviors , 2020, Frontiers in Cellular Neuroscience.

[6]  B. D. Corte,et al.  Cerebellar D1DR-expressing neurons modulate the frontal cortex during timing tasks , 2020, Neurobiology of Learning and Memory.

[7]  Zhi-Yong Wang,et al.  Expression of Dopamine Receptors in the Lateral Hypothalamic Nucleus and Their Potential Regulation of Gastric Motility in Rats With Lesions of Bilateral Substantia Nigra , 2019, Front. Neurosci..

[8]  S. Bilbo,et al.  Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats , 2018, Nature Communications.

[9]  Julia A. Licholai,et al.  Dopamine D1 Receptor–Positive Neurons in the Lateral Nucleus of the Cerebellum Contribute to Cognitive Behavior , 2018, Biological Psychiatry.

[10]  B. Guo,et al.  Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice , 2017, Front. Neural Circuits.

[11]  J. Pilitsis,et al.  Effect of diazepam and yohimbine on neuronal activity in sham and hemiparkinsonian rats , 2017, Neuroscience.

[12]  James M. Shine,et al.  Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson's disease , 2017, NeuroImage.

[13]  A. Parent,et al.  Striatal Neurons Expressing D1 and D2 Receptors are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice , 2017, Scientific Reports.

[14]  J. Pilitsis,et al.  Investigation of diazepam efficacy on anxiety-like behavior in hemiparkinsonian rats , 2016, Behavioural Brain Research.

[15]  A. Dagher,et al.  Compensatory striatal–cerebellar connectivity in mild–moderate Parkinson's disease , 2015, NeuroImage: Clinical.

[16]  D. Hwang,et al.  A time-course study of behavioral and electrophysiological characteristics in a mouse model of different stages of Parkinson's disease using 6-hydroxydopamine , 2015, Behavioural Brain Research.

[17]  J. Pilitsis,et al.  Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats , 2015, Brain Structure and Function.

[18]  M. Sahraian,et al.  The human cerebellum: a review of physiologic neuroanatomy. , 2014, Neurologic clinics.

[19]  Yiyun Huang,et al.  An-jun-ning, a traditional herbal formula, attenuates spontaneous withdrawal symptoms via modulation of the dopamine system in morphine-dependent rats , 2014, BMC Complementary and Alternative Medicine.

[20]  A. Moszczynska,et al.  Single and Binge Methamphetamine Administrations Have Different Effects on the Levels of Dopamine D2 Autoreceptor and Dopamine Transporter in Rat Striatum , 2014, International journal of molecular sciences.

[21]  J. Pilitsis,et al.  Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. , 2013, Journal of neurophysiology.

[22]  Lauren E. Mueller,et al.  Elevated potassium provides an ionic mechanism for deep brain stimulation in the hemiparkinsonian rat , 2013, The European journal of neuroscience.

[23]  Jeremy D. Schmahmann,et al.  Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study , 2012, NeuroImage.

[24]  M. Stacy Nonmotor Symptoms in Parkinson's Disease , 2011, The International journal of neuroscience.

[25]  N. Volkow,et al.  Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate , 2010, The European journal of neuroscience.

[26]  D. Linden,et al.  Dopamine Signaling Is Required for Depolarization-Induced Slow Current in Cerebellar Purkinje Cells , 2009, The Journal of Neuroscience.

[27]  Hong Yu,et al.  Role of hyperactive cerebellum and motor cortex in Parkinson's disease , 2007, NeuroImage.

[28]  Hans-Georg Buchholz,et al.  Asymmetry in dopamine D2/3 receptors of caudate nucleus is lost with age , 2007, NeuroImage.

[29]  M. Kassiou,et al.  Developing a preclinical model of Parkinson's disease: A study of behaviour in rats with graded 6-OHDA lesions , 2006, Behavioural Brain Research.

[30]  Kenichi Tanaka,et al.  Microdosimetric evaluation of the 400MeV∕nucleon carbon beam at HIMAC. , 2005, Medical physics.

[31]  M. Hallett,et al.  A functional MRI study of automatic movements in patients with Parkinson's disease. , 2005, Brain : a journal of neurology.

[32]  R. Beaurepaire,et al.  Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat , 2005, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[33]  J. Voogd The human cerebellum , 2003, Journal of Chemical Neuroanatomy.

[34]  Masao Ito,et al.  Historical Review of the Significance of the Cerebellum and the Role of Purkinje Cells in Motor Learning , 2002, Annals of the New York Academy of Sciences.

[35]  D. Lewis,et al.  Tyrosine Hydroxylase- and Dopamine Transporter-Immunoreactive Axons in the Primate Cerebellum , 2000, Neuropsychopharmacology.

[36]  G. Perrault,et al.  Decreased locomotor activity after microinjection of dopamine D2/D3 receptor agonists and antagonists into lobule 9 10 of the cerebellum: A D3 receptor mediated effect? , 2000, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[37]  F. Amenta,et al.  Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex , 2000, Brain Research.

[38]  A. Rivera,et al.  Differential regional and cellular distribution of dopamine D2‐like receptors: An immunocytochemical study of subtype‐specific antibodies in rat and human brain , 1998, The Journal of comparative neurology.

[39]  F Kehren,et al.  Left-right asymmetry of striatal dopamine D2 receptors. , 1998, Nuclear medicine communications.

[40]  G. Bishop,et al.  Distribution of tyrosine hydroxylase‐immunoreactive afferents to the cerebellum differs between species , 1997, The Journal of comparative neurology.

[41]  F. Chollet,et al.  The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. , 1997, Brain : a journal of neurology.

[42]  R. Beaurepaire,et al.  Evidence for a functional role of the dopamine D3 receptors in the cerebellum , 1996, Brain Research.

[43]  R. Burke,et al.  6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. , 1995, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[44]  N. Mizuno,et al.  Single neurons in the ventral tegmental area that project to both the cerebral and cerebellar cortical areas by way of axon collaterals , 1994, Neuroscience.

[45]  D. Grandy,et al.  Dopamine Receptor Gene Expression in the Human Medial Temporal Lobe , 1994, Neuropsychopharmacology.

[46]  T. Hattori,et al.  Tyrosine hydroxylase immunoreactivity in cerebellar Purkinje cells of the rat , 1993, Neuroscience Letters.

[47]  N. Mizuno,et al.  Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei , 1992, Neuroscience.

[48]  H. Akil,et al.  A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques , 1992, Neuroscience.

[49]  N. Panagopoulos,et al.  Dopaminergic innervation and binding in the rat cerebellum , 1991, Neuroscience Letters.

[50]  K. S. Bankiewicz,et al.  A 6-hydroxydopamine-induced selective parkinsonian rat model , 1989, Brain Research.

[51]  J. Palacios,et al.  Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology , 1989, Brain Research.

[52]  T. Dawson,et al.  Presynaptic and postsynaptic D1 dopamine receptors in the nigrostriatal system of the rat brain: a quantitative autoradiographic study using the selective D1 antagonist [3H]SCH 23390 , 1987, Brain Research.

[53]  M. Savasta,et al.  Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors , 1986, Neuroscience.