On the Zarankiewicz problem for intersection hypergraphs
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Computing a face in an arrangement of line segments , 1991, SODA '91.
[2] Leonidas J. Guibas,et al. Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..
[3] J. Pach,et al. Separator theorems and Turán-type results for planar intersection graphs , 2008 .
[4] Jirí Matousek,et al. On range searching with semialgebraic sets , 1992, Discret. Comput. Geom..
[5] Micha Sharir,et al. On Range Searching with Semialgebraic Sets II , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[6] János Pach,et al. A Separator Theorem for String Graphs and its Applications , 2009, Combinatorics, Probability and Computing.
[7] I. Reiman. Über ein Problem von K. Zarankiewicz , 1958 .
[8] Robin Wilson,et al. Modern Graph Theory , 2013 .
[9] J. Pach,et al. A semi-algebraic version of Zarankiewicz's problem , 2014, 1407.5705.
[10] Boaz Tagansky,et al. A new technique for analyzing substructures in arrangements of piecewise linear surfaces , 1996, Discret. Comput. Geom..
[11] Marco Pellegrini,et al. On counting pairs of intersecting segments and off-line triangle range searching , 1997, Algorithmica.
[12] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[13] P. Erdös. On extremal problems of graphs and generalized graphs , 1964 .
[14] Micha Sharir,et al. On planar intersection graphs with forbidden subgraphs , 2008, J. Graph Theory.
[15] Mark de Berg,et al. Cuttings and applications , 1995, Int. J. Comput. Geom. Appl..
[16] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[17] David Haussler,et al. Epsilon-nets and simplex range queries , 1986, SCG '86.
[18] G. Tóth,et al. The discharging method in combinatorial geometry and the Pach – Sharir conjecture , 2009 .
[19] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[20] Peter Volkmann,et al. Über ein Problem von Fenyő , 1984 .
[21] János Pach,et al. Applications of a New Separator Theorem for String Graphs , 2013, Combinatorics, Probability and Computing.